Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T12:05:02.021Z Has data issue: false hasContentIssue false

Scaling mean velocity in two-dimensional turbulent wall jets

Published online by Cambridge University Press:  20 March 2020

Abhishek Gupta
Affiliation:
Indian Institute of Tropical Meteorology, Pashan, Pune 411008, India Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
Harish Choudhary
Affiliation:
Indian Institute of Tropical Meteorology, Pashan, Pune 411008, India
A. K. Singh
Affiliation:
Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
Thara Prabhakaran
Affiliation:
Indian Institute of Tropical Meteorology, Pashan, Pune 411008, India
Shivsai Ajit Dixit*
Affiliation:
Indian Institute of Tropical Meteorology, Pashan, Pune 411008, India
*
Email address for correspondence: sadixit@tropmet.res.in

Abstract

Studies in the literature on two-dimensional, fully developed, turbulent wall jets on flat surfaces, have invariably reckoned on either the nozzle initial conditions or the asymptotic conditions far downstream, as scaling parameters for the streamwise variations of length and velocity scales. These choices, however, do not square with the notion of self-similarity, which is essentially a ‘local’ concept. We first demonstrate that the streamwise variations of velocity and length scales in wall jets show remarkable scaling with local parameters, i.e. there appear to be no imposed length and velocity scales. Next, it is shown that the mean velocity profile data suggest the existence of two distinct layers – the wall (inner) layer and the full-free jet (outer) layer. Each of these layers scales on the appropriate length and velocity scales and this scaling is observed to be universal, i.e. independent of the local friction Reynolds number. Analysis shows that the overlap of these universal scalings leads to a Reynolds-number-dependent power-law velocity variation in the overlap layer. It is observed that the mean-velocity overlap layer corresponds well to the momentum-balance mesolayer and there appears to be no evidence for an inertial overlap; only the meso-overlap is observed. Introduction of an intermediate variable absorbs the Reynolds-number dependence of the length scale in the overlap layer and this leads to a universal power-law overlap profile for mean velocity in terms of the intermediate variable.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzal, N. 1982 Fully developed turbulent flow in a pipe: an intermediate layer. Ing.-Arch. 52 (6), 355377.CrossRefGoogle Scholar
Afzal, N. 2005 Analysis of power law and log law velocity profiles in the overlap region of a turbulent wall jet. Proc. Math. Phys. Engng Sci. 461 (2058), 18891910.CrossRefGoogle Scholar
Ahlman, D., Brethouwer, G. & Johansson, A. V. 2007 Direct numerical simulation of a plane turbulent wall-jet including scalar mixing. Phys. Fluids 19 (6), 065102.CrossRefGoogle Scholar
Bailey, S. C. C., Hultmark, M., Monty, J. P., Alfredsson, P. H., Chong, M. S., Duncan, R. D., Fransson, J. H. M., Hutchins, N., Marusic, I., McKeon, B. J. et al. 2013 Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes. J. Fluid Mech. 715, 642670.CrossRefGoogle Scholar
Banyassady, R. & Piomelli, U. 2014 Turbulent plane wall jets over smooth and rough surfaces. J. Turbul. 15 (3), 186207.CrossRefGoogle Scholar
Banyassady, R. & Piomelli, U. 2015 Interaction of inner and outer layers in plane and radial wall jets. J. Turbul. 16 (5), 460483.CrossRefGoogle Scholar
Barenblatt, G. I., Chorin, A. J. & Prostokishin, V. M. 2005 The turbulent wall jet: a triple-layered structure and incomplete similarity. Proc. Natl Acad. Sci. USA 102 (25), 88508853.CrossRefGoogle ScholarPubMed
Bradshaw, P. 1963 Discussion on Plane turbulent wall jet flow development and friction factor by Myers et al. 1963. Trans. ASME J. Basic Engng 85 (1), 5354.CrossRefGoogle Scholar
Bradshaw, P. & Gee, M. T.1962 Turbulent wall jets with and without an external stream. Aeronautical Research Council Reports and Memoranda, 3252, Her Majesty’s Stationary Office.Google Scholar
Bradshaw, P. & Gregory, N.1961 The determination of local turbulent skin friction from observations in the viscous sub-layer. Aeronautical Research Council Reports and Memoranda, Her Majesty’s Stationary Office.Google Scholar
Chauhan, K., Henry, C. H. & Marusic, I. 2010 Empirical mode decomposition and Hilbert transforms for analysis of oil-film interferograms. Meas. Sci. Technol. 21 (10), 105405.CrossRefGoogle Scholar
Dejoan, A. & Leschziner, M. A. 2005 Large eddy simulation of a plane turbulent wall jet. Phys. Fluids 17, 025102.CrossRefGoogle Scholar
Deo, R. C., Mi, J. & Nathan, G. J. 2008 The influence of Reynolds number on a plane jet. Phys. Fluids 20 (7), 075108.CrossRefGoogle Scholar
Durst, F., Zanoun, E.-S. & Pashtrapanska, M. 2001 In situ calibration of hot wires close to highly heat-conducting walls. Exp. Fluids 31 (1), 103110.CrossRefGoogle Scholar
Eriksson, J. G., Karlsson, R. I. & Persson, J. 1998 An experimental study of a two-dimensional plane turbulent wall jet. Exp. Fluids 25 (1), 5060.CrossRefGoogle Scholar
George, W. K., Abrahamsson, H., Eriksson, J., Karlsson, R. I., Löfdahl, L. & Wosnik, M. 2000 A similarity theory for the turbulent plane wall jet without external stream. J. Fluid Mech. 425, 367411.CrossRefGoogle Scholar
George, W. K. & Castillo, L. 1997 Zero-pressure-gradient turbulent boundary layer. Appl. Mech. Rev. 50 (12), 689729.CrossRefGoogle Scholar
Gersten, K. 2015 The asymptotic downstream flow of plane turbulent wall jets without external stream. J. Fluid Mech. 779, 351370.CrossRefGoogle Scholar
Glauert, M. B. 1956 The wall jet. J. Fluid Mech. 1 (6), 625643.CrossRefGoogle Scholar
Gnanamanickam, E. P., Bhatt, S., Artham, S. & Zhang, Z. 2019 Large-scale motions in a plane wall jet. J. Fluid Mech. 877, 239281.CrossRefGoogle Scholar
Hong, S. 2010 A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q. J. R. Meteorol. Soc. 136 (651), 14811496.CrossRefGoogle Scholar
Hu, X., Klein, P. M. & Xue, M. 2013 Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. 118 (18), 10490.Google Scholar
Irwin, H. P. A. H. 1973 Measurements in a self-preserving plane wall jet in a positive pressure gradient. J. Fluid Mech. 61 (1), 3363.CrossRefGoogle Scholar
Kevorkian, J. & Cole, J. D. 2013 Perturbation Methods in Applied Mathematics, vol. 34. Springer Science & Business Media.Google Scholar
Launder, B. E. & Rodi, W. 1979 The turbulent wall jet. Prog. Aerosp. Sci. 19, 81128.CrossRefGoogle Scholar
Launder, B. E. & Rodi, W. 1983 The turbulent wall jet measurements and modeling. Annu. Rev. Fluid Mech. 15 (1), 429459.CrossRefGoogle Scholar
McIntyre, R., Savory, E., Wu, H. & Ting, D. S.-K. 2019 The effect of the nozzle top lip thickness on a two-dimensional wall jet. Trans. ASME J. Fluids Engng 141 (5), 051106.Google Scholar
Myers, G. E., Schauer, J. J. & Eustis, R. H. 1963 Plane turbulent wall jet flow development and friction factor. Trans. ASME J. Basic Engng 85 (1), 4753.CrossRefGoogle Scholar
Naqavi, I. Z., Tyacke, J. C. & Tucker, P. G. 2018 Direct numerical simulation of a wall jet: flow physics. J. Fluid Mech. 852, 507542.CrossRefGoogle Scholar
Narasimha, R. 1990 The utility and drawbacks of traditional approaches. In Whither Turbulence? Turbulence at the Crossroads, pp. 1348. Springer.CrossRefGoogle Scholar
Narasimha, R., Narayan, K. Y. & Parthasarathy, S. P. 1973 Parametric analysis of turbulent wall jets in still air. Aeronaut. J. 77 (751), 355359.Google Scholar
Rostamy, N., Bergstrom, D. J., Sumner, D. & Bugg, J. D. 2011 The effect of surface roughness on the turbulence structure of a plane wall jet. Phys. Fluids 23 (8), 085103.CrossRefGoogle Scholar
Schneider, M. E. & Goldstein, R. J. 1994 Laser doppler measurement of turbulence parameters in a two-dimensional plane wall jet. Phys. Fluids 6 (9), 31163129.CrossRefGoogle Scholar
Schneider, W. 1985 Decay of momentum flux in submerged jets. J. Fluid Mech. 154, 91110.CrossRefGoogle Scholar
Schwarz, W. H. & Cosart, W. P. 1961 The two-dimensional turbulent wall-jet. J. Fluid Mech. 10 (4), 481495.CrossRefGoogle Scholar
Smedman, A., Bergström, H. & Högström, U. 1995 Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Boundary-Layer Meteorol. 76 (3), 211232.CrossRefGoogle Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Sreenivasan, K. R. & Sahay, A. 1997 The persistence of viscous effects in the overlap region, and the mean velocity in turbulent pipe and channel flows. In Self-Sustaining Mechanism of Wall Turbulence (ed. Panton, R. L.), pp. 253271. Computational Mechanics Publications.Google Scholar
Tachie, M. F.2001 Open channel turbulent boundary layers and wall jets on smooth and rough surfaces. PhD thesis, Department of Mechanical Engineering, University of Saskatchewan.Google Scholar
Tachie, M., Balachandar, R. & Bergström, D. 2002 Scaling the inner region of turbulent plane wall jets. Exp. Fluids 33 (2), 351354.CrossRefGoogle Scholar
Tailland, A. & Mathieu, J. 1967 Jet pariétal. J. Méc. 6, 103130.Google Scholar
Tang, Z., Rostamy, N., Bergstrom, D. J., Bugg, J. D. & Sumner, D. 2015 Incomplete similarity of a plane turbulent wall jet on smooth and transitionally rough surfaces. J. Turbul. 16 (11), 10761090.CrossRefGoogle Scholar
Wei, T., Fife, P., Klewicki, J. & McMurtry, P. 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.CrossRefGoogle Scholar
Wosnik, M., Castillo, L. & George, W. K. 2000 A theory for turbulent pipe and channel flows. J. Fluid Mech. 421, 115145.CrossRefGoogle Scholar
Wygnanski, I., Katz, Y. & Horev, E. 1992 On the applicability of various scaling laws to the turbulent wall jet. J. Fluid Mech. 234, 669690.CrossRefGoogle Scholar