Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T17:45:41.196Z Has data issue: false hasContentIssue false

Scaling laws for planetary sediment transport from DEM-RANS numerical simulations

Published online by Cambridge University Press:  17 May 2023

Thomas Pähtz*
Affiliation:
Donghai Laboratory, 316021 Zhoushan, PR China Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, 316021 Zhoushan, PR China
Orencio Durán
Affiliation:
Department of Ocean Engineering, Texas A&M University, College Station, TX 77843-3136, USA
*
Email address for correspondence: 0012136@zju.edu.cn

Abstract

We use an established discrete element method (DEM) Reynolds-averaged Navier–Stokes (RANS)-based numerical model to simulate non-suspended sediment transport across conditions encompassing almost seven orders of magnitude in the particle–fluid density ratio $s$, ranging from subaqueous transport ($s=2.65$) to aeolian transport in the highly rarefied atmosphere of Pluto ($s=10^7$), whereas previous DEM-based sediment transport studies did not exceed terrestrial aeolian conditions ($s\approx 2000$). Guided by these simulations and by experiments, we semi-empirically derive simple scaling laws for the cessation threshold and rate of equilibrium aeolian transport, both exhibiting a rather unusual $s^{1/3}$-dependence. They constitute a simple means to make predictions of aeolian processes across a large range of planetary conditions. The derivation consists of a first-principle-based proof of the statement that, under relatively mild assumptions, the cessation threshold physics is controlled by only one dimensionless control parameter, rather than two expected from dimensional analysis. Crucially, unlike existing models, this proof does not resort to coarse-graining the particle phase of the aeolian transport layer above the bed surface. From the pool of existing models, only that by Pähtz et al. (J. Geophys. Res.: Earth, vol. 126, 2021, e2020JF005859) is somewhat consistent with the combined numerical and experimental data. It captures the scaling of the cessation threshold and the $s^{1/3}$-dependence of the transport rate, but fails to capture the latter's superimposed grain size dependence. This hints at a lack of understanding of the transport rate physics and calls for future studies on this issue.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreotti, B. 2004 A two-species model of aeolian sand transport. J. Fluid Mech. 510, 4770.CrossRefGoogle Scholar
Andreotti, B., Claudin, P., Iversen, J.J., Merrison, J.P. & Rasmussen, K.R. 2021 A lower than expected saltation threshold at Martian pressure and below. Proc. Natl Acad. Sci. USA 118 (5), e2012386118.CrossRefGoogle ScholarPubMed
Bagnold, R.A. 1937 The transport of sand by wind. Geogr. J. 89 (5), 409438.CrossRefGoogle Scholar
Barenblatt, G.I. 1996 Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press.CrossRefGoogle Scholar
Beladjine, D., Ammi, M., Oger, L. & Valance, A. 2007 Collision process between an incident bead and a three-dimensional granular packing. Phys. Rev. E 75 (6), 061305.CrossRefGoogle Scholar
Berzi, D., Jenkins, J.T. & Valance, A. 2016 Periodic saltation over hydrodynamically rough beds: aeolian to aquatic. J. Fluid Mech. 786, 190209.CrossRefGoogle Scholar
Berzi, D., Valance, A. & Jenkins, J.T. 2017 The threshold for continuing saltation on Earth and other solar system bodies. J. Geophys. Res.: Earth 122 (7), 13741388.CrossRefGoogle Scholar
Besnard, J.B., Dupont, P., Ould El Moctar, A. & Valance, A. 2022 Aeolian erosion thresholds for cohesive sand. J. Geophys. Res.: Earth 127, e2022JF006803.Google Scholar
Bourke, M.C., Lancaster, N., Fenton, L.K., Parteli, E.J.R., Zimbelman, J.R. & Radebaugh, J. 2010 Extraterrestrial dunes: an introduction to the special issue on planetary dune systems. Geomorphology 121 (1–2), 114.CrossRefGoogle Scholar
Buffington, J.M. & Montgomery, D.R. 1997 A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33 (8), 19932029.CrossRefGoogle Scholar
Burr, D.M., Bridges, N.T., Marshall, J.R., Smith, J.K., White, B.R. & Emery, J.P. 2015 Higher-than-predicted saltation threshold wind speeds on Titan. Nature 517 (7532), 6063.CrossRefGoogle ScholarPubMed
Burr, D.M., Sutton, S.L.F., Emery, J.P., Nield, E.V., Kok, J.F., Smith, J.K. & Bridges, N.T. 2020 A wind tunnel study of the effect of intermediate density ratio on saltation threshold. Aeolian Res. 45, 100601.CrossRefGoogle Scholar
Camenen, B. 2007 Simple and general formula for the settling velocity of particles. J. Hydraul. Engng ASCE 133 (2), 229233.CrossRefGoogle Scholar
Capart, H. & Fraccarollo, L. 2011 Transport layer structure in intense bed-load. Geophys. Res. Lett. 38 (20), L20402.CrossRefGoogle Scholar
Carneiro, M.V., Araújo, N.A.M., Pähtz, T. & Herrmann, H.J. 2013 Midair collisions enhance saltation. Phys. Rev. Lett. 111 (5), 058001.CrossRefGoogle ScholarPubMed
Chepil, W.S. 1945 Dynamics of wind erosion: II. Initiation of soil movement. Soil Sci. 60 (5), 397411.CrossRefGoogle Scholar
Claudin, P. & Andreotti, B. 2006 A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 252 (1–2), 3044.CrossRefGoogle Scholar
Clifton, A., Rüedi, J.D. & Lehning, M. 2006 Snow saltation threshold measurements in a drifting-snow wind tunnel. J. Glaciol. 52 (179), 585596.CrossRefGoogle Scholar
Comola, F., Gaume, J., Kok, J.F. & Lehning, M. 2019 a Cohesion-induced enhancement of aeolian saltation. Geophys. Res. Lett. 46 (10), 55665574.CrossRefGoogle Scholar
Comola, F., Kok, J.F., Chamecki, M. & Martin, R.L. 2019 b The intermittency of wind-driven sand transport. Geophys. Res. Lett. 46 (22), 1343013440.CrossRefGoogle Scholar
Comola, F., Kok, J.F., Lora, J.M., Cohanim, K., Yu, X., He, C., McGuiggan, P., Hörst, S.M. & Turney, F. 2022 Titan's prevailing circulation might drive highly intermittent, yet significant sediment transport. Geophys. Res. Lett. 49 (7), e2022GL097913.CrossRefGoogle Scholar
Creyssels, M., Dupont, P., Ould El Moctar, A., Valance, A., Cantat, I., Jenkins, J.T., Pasini, J.M. & Rasmussen, K.R. 2009 Saltating particles in a turbulent boundary layer: experiment and theory. J. Fluid Mech. 625, 4774.CrossRefGoogle Scholar
Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M. & Tsuji, Y. 2012 Multiphase Flows with Droplets and Particles. Taylor & Francis Group.Google Scholar
Diniega, S., Kreslavsky, M., Radebaugh, J., Silvestro, S., Telfer, M. & Tirsch, D. 2017 Our evolving understanding of aeolian bedforms, based on observation of dunes on different worlds. Aeolian Res. 26, 527.CrossRefGoogle Scholar
Durán, O., Andreotti, B. & Claudin, P. 2012 Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys. Fluids 24 (10), 103306.CrossRefGoogle Scholar
Durán, O., Andreotti, B. & Claudin, P. 2014 a Turbulent and viscous sediment transport – a numerical study. Adv. Geosci. 37, 7380.CrossRefGoogle Scholar
Durán, O., Claudin, P. & Andreotti, B. 2011 On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res. 3 (3), 243270.CrossRefGoogle Scholar
Durán, O., Claudin, P. & Andreotti, B. 2014 b Direct numerical simulations of aeolian sand ripples. Proc. Natl Acad. Sci. USA 111 (44), 1566515668.CrossRefGoogle ScholarPubMed
Durán Vinent, O., Andreotti, B., Claudin, P. & Winter, C. 2019 A unified model of ripples and dunes in water and planetary environments. Nat. Geosci. 12, 345350.CrossRefGoogle Scholar
Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids. Phys. Fluids 14 (2), 643.CrossRefGoogle Scholar
Greeley, R., Iversen, J., Leach, R., Marshall, J., White, B. & Williams, S. 1984 Windblown sand on Venus: preliminary results of laboratory simulations. Icarus 57 (1), 112124.CrossRefGoogle Scholar
Greeley, R., Leach, R., White, B., Iversen, J. & Pollack, J. 1980 Threshold windspeeds for sand on mars: wind tunnel simulations. Geophys. Res. Lett. 7 (2), 121124.CrossRefGoogle Scholar
Greeley, R., White, B., Leach, R., Iversen, J. & Pollack, J. 1976 Mars: wind friction speeds for particle movement. Geophys. Res. Lett. 3 (8), 417420.CrossRefGoogle Scholar
Gunn, A. & Jerolmack, D.J. 2022 Conditions for aeolian transport in the solar system. Nat. Astron. 57, 923929.CrossRefGoogle Scholar
Guo, J. 2015 Sidewall and non-uniformity corrections for flume experiments. J. Hydraul. Res. 53 (2), 218229.CrossRefGoogle Scholar
Ho, T.D. 2012 Etude expérimentale du transport de particules dans une couche limite turbulente. PhD thesis, University of Rennes 1, Rennes, France.Google Scholar
Ho, T.D., Valance, A., Dupont, P. & Ould El Moctar, A. 2011 Scaling laws in aeolian sand transport. Phys. Rev. Lett. 106 (9), 094501.CrossRefGoogle ScholarPubMed
Iversen, J.D. & White, B.R. 1982 Saltation threshold on Earth, Mars and Venus. Sedimentology 29 (1), 111119.CrossRefGoogle Scholar
Jenkins, J.T. & Valance, A. 2014 Periodic trajectories in aeolian sand transport. Phys. Fluids 26 (7), 073301.CrossRefGoogle Scholar
Jia, P., Andreotti, B. & Claudin, P. 2017 Giant ripples on comet 67P/Churyumov-Gerasimenko sculpted by sunset thermal wind. Proc. Natl Acad. Sci. USA 114 (10), 25092514.CrossRefGoogle ScholarPubMed
Kok, J.F. 2010 a Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: implications for dunes and dust storms. Phys. Rev. Lett. 104 (7), 074502.CrossRefGoogle ScholarPubMed
Kok, J.F. 2010 b An improved parametrization of wind blown sand flux on Mars that includes the effect of hysteresis. Geophys. Res. Lett. 37 (12), L12202.CrossRefGoogle Scholar
Kok, J.F., Parteli, E.J.R., Michaels, T.I. & Karam, D.B. 2012 The physics of wind-blown sand and dust. Rep. Prog. Phys. 75 (10), 106901.CrossRefGoogle ScholarPubMed
Kok, J.F. & Renno, N.O. 2009 A comprehensive numerical model of steady state saltation (COMSALT). J. Geophys. Res.: Atmos. 114, D17204.CrossRefGoogle Scholar
Lämmel, M., Dzikowski, K., Kroy, K., Oger, L. & Valance, A. 2017 Grain-scale modeling and splash parametrization for aeolian sand transport. Phys. Rev. E 95 (2), 022902.CrossRefGoogle ScholarPubMed
Lämmel, M. & Kroy, K. 2017 Analytical mesoscale modeling of aeolian sand transport. Phys. Rev. E 96 (5), 052906.CrossRefGoogle ScholarPubMed
Leonard, K.C., Tremblay, L.B., Thom, J.E. & MacAyeal, D.R. 2011 Drifting snow threshold measurements near McMurdo station, Antarctica: a sensor comparison study. Cold Reg. Sci. Technol. 70, 7180.CrossRefGoogle Scholar
Martin, R.L. & Kok, J.F. 2017 Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress. Sci. Adv. 3 (6), e1602569.CrossRefGoogle ScholarPubMed
Martin, R.L. & Kok, J.F. 2018 Distinct thresholds for the initiation and cessation of aeolian saltation from field measurements. J. Geophys. Res.: Earth 123 (7), 15461565.CrossRefGoogle Scholar
Meyer-Peter, E. & Müller, R. 1948 Formulas for bedload transport. In Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research, pp. 39–64. IAHR.Google Scholar
Pähtz, T., Clark, A.H., Valyrakis, M. & Durán, O. 2020 The physics of sediment transport initiation, cessation, and entrainment across aeolian and fluvial environments. Rev. Geophys. 58 (1), e2019RG000679.CrossRefGoogle Scholar
Pähtz, T. & Durán, O. 2018 a The cessation threshold of nonsuspended sediment transport across aeolian and fluvial environments. J. Geophys. Res.: Earth 123 (8), 16381666.CrossRefGoogle Scholar
Pähtz, T. & Durán, O. 2018 b Universal friction law at granular solid-gas transition explains scaling of sediment transport load with excess fluid shear stress. Phys. Rev. Fluids 3 (10), 104302.CrossRefGoogle Scholar
Pähtz, T. & Durán, O. 2020 Unification of aeolian and fluvial sediment transport rate from granular physics. Phys. Rev. Lett. 124 (16), 168001.CrossRefGoogle ScholarPubMed
Pähtz, T., Liu, Y., Xia, Y., Hu, P., He, Z. & Tholen, K. 2021 Unified model of sediment transport threshold and rate across weak and intense subaqueous bedload, windblown sand, and windblown snow. J. Geophys. Res.: Earth 126 (4), e2020JF005859.Google Scholar
Pomeroy, J.W. & Gray, D.M. 1990 Saltation of snow. Water Resour. Res. 26 (7), 15831594.CrossRefGoogle Scholar
Ralaiarisoa, J.L., Besnard, J.B., Furieri, B., Dupont, P., Ould El Moctar, A., Naaim-Bouvet, F. & Valance, A. 2020 Transition from saltation to collisional regime in windblown sand. Phys. Rev. Lett. 124 (19), 198501.CrossRefGoogle ScholarPubMed
Sagan, C. & Chyba, C. 1990 Triton's streaks as windblown dust. Nature 346, 546548.CrossRefGoogle Scholar
Shao, Y. & Lu, H. 2000 A simple expression for wind erosion threshold friction velocity. J. Geophys. Res.: Atmos. 105 (D17), 2243722443.CrossRefGoogle Scholar
Smart, G.M. & Jaeggi, M.N.R. 1983 Sediment transport on steep slopes. In Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie. ETH Zurich.Google Scholar
Sugiura, K., Nishimura, K., Maeno, N. & Kimura, T. 1998 Measurements of snow mass flux and transport rate at different particle diameters in drifting snow. Cold Reg. Sci. Technol. 27 (2), 8389.CrossRefGoogle Scholar
Swann, C., Sherman, D.J. & Ewing, R.C. 2020 Experimentally derived thresholds for windblown sand on Mars. Geophys. Res. Lett. 47, e2019GL084484.CrossRefGoogle Scholar
Telfer, M.W., et al. 2018 Dunes on Pluto. Science 360 (6392), 992997.CrossRefGoogle ScholarPubMed
Thomas, N., et al. 2015 The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science 347 (6220), aaa0440.CrossRefGoogle ScholarPubMed
Ungar, J.E. & Haff, P.K. 1987 Steady state saltation in air. Sedimentology 34 (2), 289299.CrossRefGoogle Scholar
Zhu, W., Huo, X., Zhang, J., Wang, P., Pähtz, T., Huang, N. & He, Z. 2019 Large effects of particle size heterogeneity on dynamic saltation threshold. J. Geophys. Res.: Earth 124 (8), 23112321.CrossRefGoogle Scholar