Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-08-17T19:22:59.121Z Has data issue: false hasContentIssue false

Scale invariance of intermittency in LES turbulence

Published online by Cambridge University Press:  30 July 2025

Bruno Magacho*
Affiliation:
Instituto de Matemática Pura e Aplicada – IMPA, Rio de Janeiro, Brazil
Simon Thalabard
Affiliation:
Université Côte d’Azur, CNRS, Institut de Physique de Nice, Nice 06200, France
Michele Buzzicotti
Affiliation:
Department of Physics and INFN, University of Rome “Tor Vergata”, Rome, Italy
Fabio Bonaccorso
Affiliation:
Department of Physics and INFN, University of Rome “Tor Vergata”, Rome, Italy
Luca Biferale
Affiliation:
Department of Physics and INFN, University of Rome “Tor Vergata”, Rome, Italy
Alexei A. Mailybaev
Affiliation:
Instituto de Matemática Pura e Aplicada – IMPA, Rio de Janeiro, Brazil
*
Corresponding author: Bruno Magacho, bruno.magacho@impa.br

Abstract

Turbulent flows exhibit large intermittent fluctuations from inertial to dissipative scales, characterised by multifractal statistics and breaking the statistical self-similarity. It has recently been proposed that the Navier–Stokes turbulence restores a hidden form of scale invariance in the inertial interval when formulated for a dynamically (nonlinearly) rescaled quasi-Lagrangian velocity field. Here we show that such hidden self-similarity extends to the large-eddy-simulation (LES) approach in computational fluid dynamics (CFD). In particular, we show that classical subgrid-scale models, such as implicit or explicit Smagorinsky closures, respect the hidden scale invariance at all scales – both resolved and subgrid. In the inertial range, they reproduce the hidden scale invariance of Navier–Stokes statistics. These properties are verified very accurately by numerical simulations and, beyond CFD, turn LES into a valuable tool for fundamental turbulence research.

Information

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Belinicher, V.I. & L’vov, V.S. 1987 A scale-invariant theory of fully developed hydrodynamic turbulence. Sov. Phys. JETP 66 (2), 303313.Google Scholar
Biferale, L., Bonaccorso, F., Buzzicotti, M. & Iyer, K. 2019 Self-similar subgrid-scale models for inertial range turbulence and accurate measurements of intermittency. Phys. Rev. Lett. 123 (1), 014503.10.1103/PhysRevLett.123.014503CrossRefGoogle ScholarPubMed
Biferale, L., Calzavarini, E. & Toschi, F. 2011 Multi-time multi-scale correlation functions in hydrodynamic turbulence. Phys. Fluids 23 (8), 085107.10.1063/1.3623466CrossRefGoogle Scholar
Biferale, L., Mailybaev, A.A. & Parisi, G. 2017 Optimal subgrid scheme for shell models of turbulence. Phys. Rev. E 95 (4-1), 043108.10.1103/PhysRevE.95.043108CrossRefGoogle ScholarPubMed
Calascibetta, C., Biferale, L., Bonaccorso, F., Cencini, M. & Mailybaev, A.A. 2025 Hidden symmetry in passive scalar advected by 2D Navier–Stokes turbulence. Phys. Rev. Fluids (to appear).Google Scholar
Cerutti, S. & Meneveau, C. 1998 Intermittency and relative scaling of subgrid-scale energy dissipation in isotropic turbulence. Phys. Fluids 10 (4), 928937.10.1063/1.869615CrossRefGoogle Scholar
Chen, Q., Chen, S., Eyink, G. & Sreenivasan, K. 2003 Kolmogorov’s third hypothesis and turbulent sign statistics. Phys. Rev. Lett. 90 (25), 254501.10.1103/PhysRevLett.90.254501CrossRefGoogle ScholarPubMed
Chevillard, L. 2015 Une peinture aléatoire de la turbulence des fluides. HDR thesis, ENS Lyon, France.Google Scholar
Cruz, V. & Lamballais, E. 2023 Physical/numerical duality of explicit/implicit subgrid-scale modelling. J. Turbul. 24 (6–7), 235279.10.1080/14685248.2023.2215530CrossRefGoogle Scholar
Domingues Lemos, J. & Mailybaev, A.A. 2024 Data-based approach for time-correlated closures of turbulence models. Phys. Rev. E 109 (2), 025101.10.1103/PhysRevE.109.025101CrossRefGoogle ScholarPubMed
Freitas, A., Um, K., Desbrun, M., Buzzicotti, M. & Biferale, L. 2025 A posteriori closure of turbulence models: are symmetries preserved? arXiv:2504.03870.Google Scholar
Frisch, U. 1995 Turbulence: the Legacy of AN Kolmogorov. Cambridge University Press.10.1017/CBO9781139170666CrossRefGoogle Scholar
Fureby, C. 2008 Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. 44 (6), 381396.10.1016/j.paerosci.2008.07.003CrossRefGoogle Scholar
Iyer, K., Sreenivasan, K. & Yeung, P.-K. 2017 Reynolds number scaling of velocity increments in isotropic turbulence. Phys. Rev. E 95 (2), 021101.10.1103/PhysRevE.95.021101CrossRefGoogle ScholarPubMed
Kolmogorov, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 8285.10.1017/S0022112062000518CrossRefGoogle Scholar
Lamballais, E., Cruz, R. & Perrin, R. 2021 Viscous and hyperviscous filtering for direct and large-eddy simulation. J. Comput. Phys. 431, 110115.10.1016/j.jcp.2021.110115CrossRefGoogle Scholar
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, N31.10.1080/14685240802376389CrossRefGoogle Scholar
Linkmann, M., Buzzicotti, M. & Biferale, L. 2018 Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities. J. Turbul. 19 (6), 493527.10.1080/14685248.2018.1462497CrossRefGoogle Scholar
Mailybaev, A.A. 2022 a Hidden spatiotemporal symmetries and intermittency in turbulence. Nonlinearity 35 (7), 36303679.10.1088/1361-6544/ac7504CrossRefGoogle Scholar
Mailybaev, A.A. 2022 b Shell model intermittency is the hidden self-similarity. Phys. Rev. Fluids 7, 034604.10.1103/PhysRevFluids.7.034604CrossRefGoogle Scholar
Mailybaev, A.A. 2023 Hidden scale invariance of turbulence in a shell model: from forcing to dissipation scales. Phys. Rev. Fluids 8 (5), 054605.10.1103/PhysRevFluids.8.054605CrossRefGoogle Scholar
Mailybaev, A.A. & Thalabard, S. 2022 Hidden scale invariance in Navier–Stokes intermittency. Phil. Trans. R. Soc. Lond. A 380, 2218.Google ScholarPubMed
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32 (1), 132.10.1146/annurev.fluid.32.1.1CrossRefGoogle Scholar
Mitra, D. & Pandit, R. 2004 Varieties of dynamic multiscaling in fluid turbulence. Phys. Rev. Lett. 93 (2), 024501.10.1103/PhysRevLett.93.024501CrossRefGoogle ScholarPubMed
Orszag, S. 1971 On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci. 28 (6), 10741074.10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Sagaut, P. 2005 Large Eddy Simulation for Incompressible Flows: An Introduction. Springer.Google Scholar
Thalabard, S. & Mailybaev, A. 2024 From zero-mode intermittency to hidden symmetry in random scalar advection. J. Stat. Phys. 191 (131). https://doi.org/10.1007/s10955-024-03342-4.CrossRefGoogle Scholar
Yeung, P.-K., Donzis, D. & Sreenivasan, K. 2012 Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. J. Fluid Mech. 700, 515.10.1017/jfm.2012.5CrossRefGoogle Scholar
Yeung, P.-K., Zhai, X. & Sreenivasan, K. 2015 Extreme events in computational turbulence. Proc. Natl Acad. Sci. USA 112 (41), 1263312638.10.1073/pnas.1517368112CrossRefGoogle ScholarPubMed