Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T15:07:51.394Z Has data issue: false hasContentIssue false

The sandpaper theory of flow–topography interaction for homogeneous shallow-water systems

Published online by Cambridge University Press:  13 December 2023

Timour Radko*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA
*
 Email address for correspondence: tradko@nps.edu

Abstract

Recent studies reveal the dramatic impact of seafloor roughness on the dynamics and stability of broad oceanic flows. These findings motivate the development of parameterizations that concisely represent the effects of small-scale bathymetric patterns in theoretical and coarse-resolution numerical circulation models. The previously reported quasi-geostrophic ‘sandpaper’ theory of flow–topography interaction a priori assumes gentle topographic slopes and weak flows with low Rossby numbers. Since such conditions are often violated in the ocean, we now proceed to formulate a more general model based on shallow-water equations. The new version of the sandpaper model is validated by comparing roughness-resolving and parametric simulations of the flow over a corrugated seamount.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N.J. & Young, Y.-N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131167.CrossRefGoogle Scholar
Balmforth, N.J. & Young, Y.-N. 2005 Stratified Kolmogorov flow. Part 2. J. Fluid Mech. 528, 2342.CrossRefGoogle Scholar
Benilov, E.S. 2000 The stability of zonal jets in a rough-bottomed ocean on the barotropic beta plane. J. Phys. Oceanogr. 30, 733740.2.0.CO;2>CrossRefGoogle Scholar
Benilov, E.S. 2001 Baroclinic instability of two-layer flows over one-dimensional bottom topography. J. Phys. Oceanogr. 31, 20192025.2.0.CO;2>CrossRefGoogle Scholar
Bleck, R. 2002 An oceanic general circulation model framed in hybrid isopycnic–Cartesian coordinates. Ocean Model. 4, 5558.CrossRefGoogle Scholar
Chassignet, E.P. & Xu, X. 2017 Impact of horizontal resolution (1/12° to 1/50°) on Gulf Stream separation, penetration, and variability. J. Phys. Oceanogr. 47, 19992021.CrossRefGoogle Scholar
Dewar, W.K. 1986 On the potential vorticity structure of weakly ventilated isopycnals: a theory of subtropical mode water maintenance. J. Phys. Oceanogr. 16, 12041216.2.0.CO;2>CrossRefGoogle Scholar
Eden, C., Olbers, D. & Eriksen, T. 2021 A closure for lee wave drag on the large-scale ocean circulation. J. Phys. Oceanogr. 51, 35733588.Google Scholar
Goff, J.A. 2020 Identifying characteristic and anomalous mantle from the complex relationship between abyssal hill roughness and spreading rates. Geophys. Res. Lett. 47, e2020GL088162.CrossRefGoogle Scholar
Goff, J.A. & Jordan, T.H. 1988 Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics. J. Geophys. Res. 93, 13 58913 608.CrossRefGoogle Scholar
Goldsmith, E.J. & Esler, J.G. 2021 Wave propagation in rotating shallow water in the presence of small-scale topography. J. Fluid Mech. 923, A24.CrossRefGoogle Scholar
Gulliver, L. & Radko, T. 2022 Topographic stabilization of ocean rings. Geophys. Res. Lett. 49, e2021GL097686.CrossRefGoogle Scholar
Gulliver, L.T. & Radko, T. 2023 Virtual laboratory experiments on the interaction of a vortex with small-scale topography. Phys. Fluids 35, 021703.CrossRefGoogle Scholar
Holloway, G. 1987 Systematic forcing of large-scale geophysical flows by eddy-topography interaction. J. Fluid Mech. 184, 463476.CrossRefGoogle Scholar
Holloway, G. 1992 Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr. 22, 10331046.2.0.CO;2>CrossRefGoogle Scholar
Hughes, C.W. & De Cuevas, B.A. 2001 Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J. Phys. Oceanogr. 31, 28712885.2.0.CO;2>CrossRefGoogle Scholar
Jackson, L., Hughes, C.W. & Williams, R.G. 2006 Topographic control of basin and channel flows: the role of bottom pressure torques and friction. J. Phys. Oceanogr. 36, 17861805.CrossRefGoogle Scholar
Johnson, E.R. 1978 Trapped vortices in rotating flow. J. Fluid Mech. 86, 209224.CrossRefGoogle Scholar
Klymak, J.M. 2018 Nonpropagating form drag and turbulence due to stratified flow over large-scale abyssal hill topography. J. Phys. Oceanogr. 48, 23832395.CrossRefGoogle Scholar
Klymak, J.M., Balwada, D., Garabato, A.N. & Abernathey, R. 2021 Parameterizing nonpropagating form drag over rough bathymetry. J. Phys. Oceanogr. 51, 14891501.CrossRefGoogle Scholar
LaCasce, J., Escartin, J., Chassignet, E.P. & Xu, X. 2019 Jet instability over smooth, corrugated, and realistic bathymetry. J. Phys. Oceanogr. 49, 585605.CrossRefGoogle Scholar
Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.2.0.CO;2>CrossRefGoogle Scholar
Manfroi, A. & Young, W. 2002 Stability of beta-plane Kolmogorov flow. Physica D 162, 208232.CrossRefGoogle Scholar
Marshall, D. 1995 Topographic steering of the antarctic circumpolar current. J. Phys. Oceanogr. 25, 16361650.2.0.CO;2>CrossRefGoogle Scholar
Marshall, D.P., Williams, R.G. & Lee, M.M. 1999 The relation between eddy-induced transport and isopycnic gradients of potential vorticity. J. Phys. Oceanogr. 29, 15711578.2.0.CO;2>CrossRefGoogle Scholar
Mashayek, A. 2023 Large-scale impacts of small-scale ocean topography. J. Fluid Mech. 964, F1.CrossRefGoogle Scholar
Mei, C.C. & Vernescu, M. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific Publishing.CrossRefGoogle Scholar
Metzger, E.J., et al. 2014 US Navy operational global ocean and arctic ice prediction systems. Oceanography 27, 3243.CrossRefGoogle Scholar
Naveira Garabato, A.C., Nurser, A.G., Scott, R.B. & Goff, J.A. 2013 The impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr. 43, 647668.CrossRefGoogle Scholar
Nikurashin, M., Ferrari, R., Grisouard, N. & Polzin, K. 2014 The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr. 44, 29382950.CrossRefGoogle Scholar
Palóczy, A. & LaCasce, J.H. 2022 Instability of a surface jet over rough topography. J. Phys. Oceanogr. 52, 27252740.CrossRefGoogle Scholar
Parseval, M.-A. 1806 Mémoire sur les séries et sur l'intégration complète d'une équation aux différences partielles linéaires du second ordre, à coefficients constants. Mém. Présentés par Divers Savants Acad. Sci. Paris 1, 638648.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Radko, T. 2020 Control of baroclinic instability by submesoscale topography. J. Fluid Mech. 882, A14.CrossRefGoogle Scholar
Radko, T. 2022 a Spin-down of a barotropic vortex by irregular small-scale topography. J. Fluid Mech. 944, A5.CrossRefGoogle Scholar
Radko, T. 2022 b Spin-down of a baroclinic vortex by irregular small-scale topography. J. Fluid Mech. 953, A7.CrossRefGoogle Scholar
Radko, T. 2023 A generalized theory of flow forcing by rough topography. J. Fluid. Mech. 961, A24.CrossRefGoogle Scholar
Rhines, P.B. & Young, W.R. 1982 A theory of the wind-driven circulation. Part I: mid-ocean gyres. J. Mar. Res. 40 (Suppl), 559596.Google Scholar
Stewart, A.L., McWilliams, J.C. & Solodoch, A. 2021 On the role of bottom pressure torques in wind-driven gyres. J. Phys. Oceanogr. 51, 14411464.CrossRefGoogle Scholar
Taylor, G.I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. A 104, 213218.Google Scholar
Vallis, G.K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Vanneste, J. 2000 Enhanced dissipation for quasi-geostrophic motion over small-scale topography. J. Fluid Mech. 407, 105122.CrossRefGoogle Scholar
Vanneste, J. 2003 Nonlinear dynamics over rough topography: homogeneous and stratified quasi-geostrophic theory. J. Fluid Mech. 474, 299318.CrossRefGoogle Scholar
Wåhlin, A.K. 2002 Topographic steering of dense currents with application to submarine canyons. Deep-Sea Res. I: Oceanogr. Res. Papers 49, 305320.CrossRefGoogle Scholar