Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T01:17:44.313Z Has data issue: false hasContentIssue false

Rotation of anisotropic particles in Rayleigh–Bénard turbulence

Published online by Cambridge University Press:  20 August 2020

Linfeng Jiang
Affiliation:
Department of Energy and Power Engineering, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing100084, PR China
Enrico Calzavarini*
Affiliation:
Univ. Lille, Unité de Mécanique de Lille – J. Boussinesq – UML – ULR 7512, F-59000Lille, France
Chao Sun*
Affiliation:
Department of Energy and Power Engineering, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing100084, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing100084, PR China
*
Email addresses for correspondence: enrico.calzavarini@polytech-lille.fr, chaosun@tsinghua.edu.cn
Email addresses for correspondence: enrico.calzavarini@polytech-lille.fr, chaosun@tsinghua.edu.cn

Abstract

Inertialess anisotropic particles in a Rayleigh–Bénard turbulent flow show maximal tumbling rates for weakly oblate shapes, in contrast with the universal behaviour observed in developed turbulence where the mean tumbling rate monotonically decreases with the particle aspect ratio. This is due to the concurrent effect of turbulent fluctuations and of a mean shear flow whose intensity, we show, is determined by the kinetic boundary layers. In Rayleigh–Bénard turbulence prolate particles align preferentially with the fluid velocity, while oblate ones orient with the temperature gradient. This analysis elucidates the link between particle angular dynamics and small-scale properties of convective turbulence and has implications for the wider class of sheared turbulent flows.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ardeshiri, H., Schmitt, F. G., Souissi, S., Toschi, F. & Calzavarini, E. 2017 Copepods encounter rates from a model of escape jump behaviour in turbulence. J. Plankton Res. 39 (6), 878890.CrossRefGoogle Scholar
Bakhuis, D., Mathai, V., Verschoof, R. A., Ezeta, R., Lohse, D., Huisman, S. G. & Sun, C. 2019 Statistics of rigid fibers in strongly sheared turbulence. Phys. Rev. Fluids 4 (7), 072301.CrossRefGoogle Scholar
Borgnino, M., Gustavsson, K., De Lillo, F., Boffetta, G., Cencini, M. & Mehlig, B. 2019 Alignment of nonspherical active particles in chaotic flows. Phys. Rev. Lett. 123 (13), 138003.CrossRefGoogle ScholarPubMed
Bounoua, S., Bouchet, G. & Verhille, G. 2018 Tumbling of inertial fibers in turbulence. Phys. Rev. Lett. 121 (12), 124502.CrossRefGoogle ScholarPubMed
Byron, M., Einarsson, J., Gustavsson, K., Voth, G. A., Mehlig, B. & Variano, E. 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27 (3), 035101.CrossRefGoogle Scholar
Calzavarini, E., Huang, Y. X., Schmitt, F. G. & Wang, L. P. 2018 Propelled microprobes in turbulence. Phys. Rev. Fluids 3 (5), 054604.CrossRefGoogle Scholar
Calzavarini, E. 2019 Eulerian-lagrangian fluid dynamics platform: The ch4-project. Softw. Imp. 1, 100002.CrossRefGoogle Scholar
Calzavarini, E., Jiang, L.-F. & Sun, C 2020 Anisotropic particles in two-dimensional convective turbulence. Phys. Fluids 32 (2), 023305.CrossRefGoogle Scholar
Candelier, F., Einarsson, J. & Mehlig, B. 2016 Angular dynamics of a small particle in turbulence. Phys. Rev. Lett. 117 (20), 204501.CrossRefGoogle ScholarPubMed
Challabotla, N. R., Zhao, L. & Andersson, H. I. 2015 Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2.CrossRefGoogle Scholar
Chevillard, L. & Meneveau, C. 2013 Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence. J. Fluid Mech. 737, 571596.CrossRefGoogle Scholar
DiBenedetto, M. H., Ouellette, N. T. & Koseff, J. R. 2018 Transport of anisotropic particles under waves. J. Fluid Mech. 837, 320340.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Guasto, J. S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373400.CrossRefGoogle Scholar
Gustavsson, K., Einarsson, J. & Mehlig, B. 2014 Tumbling of small axisymmetric particles in random and turbulent flows. Phys. Rev. Lett. 112 (1), 014501.CrossRefGoogle ScholarPubMed
Gustavsson, K., Jucha, J., Naso, A., Lévêque, E., Pumir, A. & Mehlig, B. 2017 Statistical model for the orientation of nonspherical particles settling in turbulence. Phys. Rev. Lett. 119 (25), 254501.CrossRefGoogle ScholarPubMed
Heymsfield, A. J. 1977 Precipitation development in stratiform ice clouds: a microphysical and dynamical study. J. Atmos. Sci. 34 (2), 367381.2.0.CO;2>CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Jiang, L.-F., Calzavarini, E. & Sun, C. 2019 Robustness of heat transfer in confined inclined convection at high Prandtl number. Phys. Rev. E 99 (1), 013108.CrossRefGoogle ScholarPubMed
Kramel, S., Voth, G. A., Tympel, S. & Toschi, F. 2016 Preferential rotation of chiral dipoles in isotropic turbulence. Phys. Rev. Lett. 117 (15), 154501.CrossRefGoogle ScholarPubMed
Marchioli, C., Fantoni, M. & Soldati, A. 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22 (3), 033301.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2013 Rotation statistics of fibers in wall shear turbulence. Acta Mech. 224 (10), 23112329.CrossRefGoogle Scholar
Marcus, G. G., Parsa, S., Kramel, S., Ni, R. & Voth, G. A. 2014 Measurements of the solid-body rotation of anisotropic particles in 3D turbulence. New J. Phys. 16 (10), 102001.CrossRefGoogle Scholar
Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D. 2016 a Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117 (2), 024501.CrossRefGoogle Scholar
Mathai, V., Neut, M. W. M., van der Poel, E. P. & Sun, C. 2016 b Translational and rotational dynamics of a large buoyant sphere in turbulence. Exp. Fluids 57 (4), 51.CrossRefGoogle Scholar
Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J. & Boersma, B. J. 2008 Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20 (9), 093302.CrossRefGoogle Scholar
Ni, R., Kramel, S., Ouellette, N. T. & Voth, G. A. 2015 Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluid Mech. 766, 202225.CrossRefGoogle Scholar
Ni, R., Ouellette, N. T. & Voth, G. A. 2014 Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J. Fluid Mech. 743, R3.CrossRefGoogle Scholar
Olson, J. A. & Kerekes, R. J. 1998 The motion of fibres in turbulent flow. J. Fluid Mech. 377, 4764.CrossRefGoogle Scholar
Parsa, S. 2013 Rotational dynamics of rod particles in fluid flows. PhD thesis, Physics Department, Wesleyan University, Middletown, CT.Google Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109 (13), 134501.CrossRefGoogle ScholarPubMed
Parsa, S. & Voth, G. A. 2014 Inertial range scaling in rotations of long rods in turbulence. Phys. Rev. Lett. 112 (2), 024501.CrossRefGoogle ScholarPubMed
Pujara, N. & Variano, E. A. 2017 Rotations of small, inertialess triaxial ellipsoids in isotropic turbulence. J. Fluid Mech. 821, 517538.CrossRefGoogle Scholar
Pumir, A. 2017 Structure of the velocity gradient tensor in turbulent shear flows. Phys. Rev. Fluids 2 (7), 074602.CrossRefGoogle Scholar
Pumir, A. & Wilkinson, M. 2011 Orientation statistics of small particles in turbulence. New J. Phys. 13 (9), 093030.CrossRefGoogle Scholar
Ravnik, J., Marchioli, C. & Soldati, A. 2018 Application limits of Jeffery's theory for elongated particle torques in turbulence: a DNS assessment. Acta Mech. 229 (2), 827839.CrossRefGoogle Scholar
Rosti, M. E., Banaei, A. A., Brandt, L. & Mazzino, A. 2018 Flexible fiber reveals the two-point statistical properties of turbulence. Phys. Rev. Lett. 121 (4), 044501.CrossRefGoogle ScholarPubMed
Shin, M. & Koch, D. L. 2005 Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143173.CrossRefGoogle Scholar
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 (6), 3650.CrossRefGoogle ScholarPubMed
Szeri, A. J. 1993 Pattern formation in recirculating flows of suspensions of orientable particles. Phil. Trans. R. Soc. Lond. A 345, 477506.Google Scholar
Voth, G. A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.CrossRefGoogle Scholar
Zhao, L., Challabotla, N. R., Andersson, H. I. & Variano, E. A. 2015 Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115 (24), 244501.CrossRefGoogle ScholarPubMed