Hostname: page-component-68c7f8b79f-xmwfq Total loading time: 0 Render date: 2025-12-19T00:37:05.647Z Has data issue: false hasContentIssue false

Richtmyer–Meshkov instability at gas/viscoelastic interfaces

Published online by Cambridge University Press:  10 December 2025

Yongrui Deng
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
Rui Sun
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
Juchun Ding*
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China Laoshan Laboratory, Qingdao 266237, PR China
Zhangbo Zhou
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
*
Corresponding author: Juchun Ding, djc@ustc.edu.cn

Abstract

This work investigates the Richtmyer–Meshkov instability (RMI) at gas/viscoelastic interfaces with an initial single-mode perturbation both experimentally and theoretically. By systematically varying the compositions and concentrations of hydrogels, a series of viscoelastic materials with tuneable mechanical properties is created, spanning from highly viscous to predominantly elastic. Following shock impact, the interface exhibits two distinct types of perturbations: small-amplitude, short-wavelength perturbations inherited from initial single-mode condition, and large-amplitude, long-wavelength perturbations arising from viscous effects. For hydrogels with high loss factors, viscosity dominates the interface dynamics, leading to pronounced V-shaped deformation of the entire interface accompanied by a rapid decay of the initial single-mode perturbation. In contrast, for hydrogels with low loss factors, elasticity plays a prominent role, leading to sustained oscillations of the single-mode perturbation. By employing the Maxwell model to simultaneously incorporate both viscous and elastic effects, a comprehensive linear theory for RMI at gas/viscoelastic interfaces is developed, which shows good agreement with experimental results in the early stages. Although deviations arise at later times due to factors such as the shear-thickening feature of hydrogels and three-dimensional effects, the model well reproduces the oscillation behaviour of single-mode perturbations. In particular, it effectively captures the trend that increasing elasticity reduces both oscillation period and amplitude, providing key insights into the role of material properties in interface dynamics.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abu-Shawareb, H., Acree, R., Adams, P., et al. 2024 Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett. 132 (6), 065102.10.1103/PhysRevLett.132.065102CrossRefGoogle Scholar
Ando, K., Liu, A.-Q. & Ohl, C.-D. 2012 Homogeneous nucleation in water in microfluidic channels. Phys. Rev. Lett. 109 (4), 044501.10.1103/PhysRevLett.109.044501CrossRefGoogle ScholarPubMed
Bajaj, D.K., Kansara, S.T., Nath, N.K., et al. 2025 Enhancement of scramjet inlet efficiency by geometrical modifications. Adv. Aerodyn. 7, 6.10.1186/s42774-025-00206-7CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Tomkins, C.D., et al. 2008 Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of richtmyer–Meshkov instability growth in a gas curtain with and without reshock. Phys. Fluids 20, 124103.10.1063/1.3041705CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G.C., Prestridge, K.P., et al. 2012 Experimental study of initial condition dependence on richtmyer–Meshkov instability in the presence of reshock. Phys. Fluids 24, 034103.10.1063/1.3693152CrossRefGoogle Scholar
Barnes, J.F., Blewett, P.J., McQueen, R.G., et al. 1974 Taylor instability in solids. J. Appl. Phys. 45 (2), 727732.10.1063/1.1663310CrossRefGoogle Scholar
Barney, C.W., Dougan, C.E., McLeod, K.R., et al. 2020 Cavitation in soft matter. Proc. Natl. Acad. Sci. 117 (17), 91579165.10.1073/pnas.1920168117CrossRefGoogle ScholarPubMed
Bellman, R. & Pennington, R. 1954 Effects of surface tension and viscosity on taylor instability. Q. Appl. Math. 12 (2), 151162.10.1090/qam/63198CrossRefGoogle Scholar
Brouillette, M. 2002 The richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445468.10.1146/annurev.fluid.34.090101.162238CrossRefGoogle Scholar
Carlès, P. & Popinet, S. 2001 Viscous nonlinear theory of richtmyer–Meshkov instability. Phys. Fluids 13 (7), 18331836.10.1063/1.1377863CrossRefGoogle Scholar
Carlès, P. & Popinet, S. 2002 The effect of viscosity, surface tension and non-linearity on Richtmyer–Meshkov instability. Eur. J. Mech. B Fluids 21 (5), 511526.10.1016/S0997-7546(02)01199-8CrossRefGoogle Scholar
Casey, D.T., Smalyuk, V.A., Tipton, R.E., et al. 2014 Development of the CD symcap platform to study gas-shell mix in implosions at the national ignition facility. Phys. Plasmas 21 (9), 092705.10.1063/1.4894215CrossRefGoogle Scholar
Chakrabarti, A., Mora, S., Richard, F., et al. 2018 Selection of hexagonal buckling patterns by the elastic Rayleigh–Taylor instability. J. Mech. Phys. Solids 121, 234257.10.1016/j.jmps.2018.07.024CrossRefGoogle Scholar
Cobos Campos, F. & Wouchuk, J.G. 2014 Analytical asymptotic velocities in linear richtmyer–Meshkov-like flows. Phys. Rev. E 90 (5), 053007.10.1103/PhysRevE.90.053007CrossRefGoogle ScholarPubMed
Dimonte, G., Gore, R. & Schneider, M. 1998 Rayleigh–Taylor instability in elastic-plastic materials. Phys. Rev. Lett. 80 (6), 1212.10.1103/PhysRevLett.80.1212CrossRefGoogle Scholar
Dimonte, G. & Ramaprabhu, P. 2010 Simulations and model of the nonlinear richtmyer–Meshkov instability. Phys. Fluids 22, 014104.10.1063/1.3276269CrossRefGoogle Scholar
Dimonte, G. & Remington, B. 1993 Richtmyer–Meshkov experiments on the Nova laser at high compression. Phys. Rev. Lett. 70 (12), 18061809.10.1103/PhysRevLett.70.1806CrossRefGoogle ScholarPubMed
Dimonte, G., Terrones, G., Cherne, F.J., et al. 2011 Use of the richtmyer–Meshkov instability to infer yield stress at high-energy densities. Phys. Rev. Lett. 107, 264502.10.1103/PhysRevLett.107.264502CrossRefGoogle ScholarPubMed
Endo, T., Shigemori, K., Azechi, H., et al. 1995 Dynamic behavior of rippled shock waves and subsequently induced areal-density-perturbation growth in laser-irradiated foils. Phys. Rev. Lett. 74 (18), 36083611.10.1103/PhysRevLett.74.3608CrossRefGoogle ScholarPubMed
Goncharov, V.N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88, 134502.10.1103/PhysRevLett.88.134502CrossRefGoogle ScholarPubMed
Haan, S.W., Lindl, J.D., Callahan, D.A., et al. 2011 Point design targets, specifications, and requirements for the 2010 ignition campaign on the national ignition facility. Phys. Plasmas 18 (5), 051001.10.1063/1.3592169CrossRefGoogle Scholar
Hahn, M., Drikakis, D., Youngs, D.L., et al. 2011 Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow. Phys. Fluids 23 (4), 046101.10.1063/1.3576187CrossRefGoogle Scholar
Holmes, R.L., Dimonte, G., Fryxell, B., et al. 1999 Richtmyer–Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 5579.10.1017/S0022112099004838CrossRefGoogle Scholar
Jacobs, J.W. & Krivets, V.V. 2005 Experiments on the late-time development of single-mode richtmyer–Meshkov instability. Phys. Fluids 17, 034105.10.1063/1.1852574CrossRefGoogle Scholar
Jensen, B.J., Cherne, F.J., Prime, M.B., et al. 2015 Jet formation in cerium metal to examine material strength. J. Appl. Phys. 118 (19), 195903.10.1063/1.4935879CrossRefGoogle Scholar
Jones, M.A. & Jacobs, J.W. 1997 A membraneless experiment for the study of richtmyer–Meshkov instability of a shock-accelerated gas interface. Phys. Fluids 9, 30783085.10.1063/1.869416CrossRefGoogle Scholar
Kuranz, C.C., Park, H.S., Huntington, C.M., et al. 2018 How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nat. Commun. 9, 1564.10.1038/s41467-018-03548-7CrossRefGoogle ScholarPubMed
Lane, W.R. 1951 Shatter of drops in streams of air. Ind. Eng. Chem. Res. 43 (6), 13121317.10.1021/ie50498a022CrossRefGoogle Scholar
Latini, M., Schilling, O. & Don, W.S. 2007 High-resolution simulations and modeling of reshocked single-mode richtmyer–Meshkov instability: comparison to experimental data and to amplitude growth model predictions. Phys. Fluids 19, 024104.10.1063/1.2472508CrossRefGoogle Scholar
Li, J., Yan, R., Zhao, B., et al. 2022 Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport. Matter Radiat. Extremes 7 (5), 8.10.1063/5.0088058CrossRefGoogle Scholar
Li, Y., Samtaney, R. & Wheatley, V. 2018 The Richtmyer–Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics. Matter Radiat. at Extremes 3 (4), 12.10.1016/j.mre.2018.01.003CrossRefGoogle Scholar
Liang, T., Jiang, C., Hu, Y., et al. 2023 Evolution of the gas–liquid interface dominated by richtmyer–Meshkov instability. Int. J. Heat Fluid Flow 102, 109156.10.1016/j.ijheatfluidflow.2023.109156CrossRefGoogle Scholar
Lindl, J., Landen, O., Edwards, J., et al. 2014 Review of the national ignition campaign 2009–2012. Phys. Plasmas 21, 020501.10.1063/1.4865400CrossRefGoogle Scholar
Liu, C. 2023 Linear Rayleigh–Taylor instability for compressible viscoelastic fluids. AIMS Math. 8 (7), 1489414918.10.3934/math.2023761CrossRefGoogle Scholar
Lombardini, M. & Pullin, D.I. 2009 Startup process in the richtmyer–Meshkov instability. Phys. Fluids 21 (4), 044104.10.1063/1.3091943CrossRefGoogle Scholar
Mansoor, M.M., Dalton, S.M., Martinez, A.A., et al. 2020 The effect of initial conditions on mixing transition of the richtmyer–Meshkov instability. J. Fluid Mech. 904, A3.10.1017/jfm.2020.620CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.10.1007/BF01015969CrossRefGoogle Scholar
Meyer, K.A. & Blewett, P.J. 1972 Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys. Fluids 15, 753759.10.1063/1.1693980CrossRefGoogle Scholar
Mikaelian, K.O. 1993 Effect of viscosity on Rayleigh–Taylor and richtmyer–Meshkov instabilities. Phys. Rev. E 47, 375383.10.1103/PhysRevE.47.375CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2005 Rayleigh–Taylor and richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17, 094105.10.1063/1.2046712CrossRefGoogle Scholar
Mikaelian, K.O. 2019 Exact, approximate, and hybrid treatments of viscous Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E 99, 023112.10.1103/PhysRevE.99.023112CrossRefGoogle ScholarPubMed
Mohaghar, M., Carter, J., Pathikonda, G., et al. 2019 The transition to turbulence in shock-driven mixing: effects of mach number and initial conditions. J. Fluid Mech. 871, 595635.10.1017/jfm.2019.330CrossRefGoogle Scholar
Mora, S., Phou, T., Fromental, J.-M., et al. 2014 Gravity driven instability in elastic solid layers. Phys. Rev. Lett. 113 (17), 178301.10.1103/PhysRevLett.113.178301CrossRefGoogle ScholarPubMed
Morgan, R.V., Aure, R., Stockero, J.D., et al. 2012 On the late-time growth of the two-dimensional Richtmyer–Meshkov instabilities in shock tube experiments. J. Fluid Mech. 712, 354383.10.1017/jfm.2012.426CrossRefGoogle Scholar
Murakami, M. & Nishi, D. 2017 Optimization of laser illumination configuration for directly driven inertial confinement fusion. Matter Radiat. Extremes 2 (2), 14.10.1016/j.mre.2016.12.002CrossRefGoogle Scholar
Napieralski, M., Cobos, F., Velikovich, A.L., et al. 2024 Richtmyer–Meshkov instability when a shock is reflected for fluids with arbitrary equation of state. J. Fluid Mech. 1000, A18.10.1017/jfm.2024.1010CrossRefGoogle Scholar
Nicholls, J.A. & Ranger, A.A. 1969 Aerodynamic shattering of liquid drops. AIAA J. 7 (2), 285290.10.2514/3.5087CrossRefGoogle Scholar
Noble, C.D., Ames, A.M., McConnell, R., et al. 2023 Simultaneous measurements of kinetic and scalar energy spectrum time evolution in the Richtmyer–Meshkov instability upon reshock. J. Fluid Mech. 975, A39.10.1017/jfm.2023.854CrossRefGoogle Scholar
Piriz, A.R., López Cela, J.J., Tahir, N.A., et al. 2006 Richtmyer–Meshkov flow in elastic solids. Phys. Rev. E 74 (3), 037301.10.1103/PhysRevE.74.037301CrossRefGoogle ScholarPubMed
Piriz, A.R., López Cela, J.J., Tahir, N.A., et al. 2008 Richtmyer–Meshkov instability in elastic-plastic media. Phys. Rev. E 78 (5), 056401.10.1103/PhysRevE.78.056401CrossRefGoogle ScholarPubMed
Plohr, J.N. & Plohr, B.J. 2005 Linearized analysis of Richtmyer–Meshkov flow for elastic materials. J. Fluid Mech. 537 (1), 55.10.1017/S0022112005004647CrossRefGoogle Scholar
Prime, M.B., Buttler, W.T., Buechler, M.A., et al. 2017 Estimation of metal strength at very high rates using free-surface richtmyer–Meshkov instabilities. J. Dyn. Behav. Mater. 3 (2), 189202.10.1007/s40870-017-0103-9CrossRefGoogle Scholar
Prime, M.B., Buttler, W.T., Fensin, S.J., et al. 2019 Tantalum strength at extreme strain rates from impact-driven richtmyer–Meshkov instabilities. Phys. Rev. E 100 (5), 053002.10.1103/PhysRevE.100.053002CrossRefGoogle ScholarPubMed
Ranjan, D., Oakley, J. & Bonazza, R. 2011 Shock-bubble interactions. Annu. Rev. Fluid Mech. 43, 117140.10.1146/annurev-fluid-122109-160744CrossRefGoogle Scholar
Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170177.Google Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297319.10.1002/cpa.3160130207CrossRefGoogle Scholar
Rollin, B. & Andrews, M.J. 2011 Mathematical model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for viscoelastic fluids. Phys. Rev. E 83, 046317.10.1103/PhysRevE.83.046317CrossRefGoogle ScholarPubMed
Sadot, O., Erez, L., Alon, U., et al. 1998 Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer–Meshkov instability. Phys. Rev. Lett. 80, 16541657.10.1103/PhysRevLett.80.1654CrossRefGoogle Scholar
Samulski, C., Srinivasan, B., Manuel, J.E., et al. 2022 Deceleration-stage rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries. Matter Radiat. Extremes 7 (2), 12.Google Scholar
Soulard, O. & Griffond, J. 2022 Permanence of large eddies in Richtmyer–Meshkov turbulence for weak shocks and high Atwood numbers. Phys. Rev. Fluids 7, 014605.10.1103/PhysRevFluids.7.014605CrossRefGoogle Scholar
Sun, Y.B., Tao, J.J. & He, X.T. 2018 Unified decomposition method to study Rayleigh–Taylor instability in liquids and solids. Phys. Rev. E 97 (6), 063109.10.1103/PhysRevE.97.063109CrossRefGoogle ScholarPubMed
Tan, Z. & Wang, W. 2019 Instability solutions for the Rayleigh–Taylor problem of non-homogeneous viscoelastic fluids in bounded domains. J. Math. Anal. Appl. 476 (2), 773800.10.1016/j.jmaa.2019.04.014CrossRefGoogle Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201, 192196.Google Scholar
Thornber, B., Drikakis, D., Youngs, D.L., et al. 2010 The influence of initial condition on turbulent mixing due to Richtmyer–Meshkov instability. J. Fluid Mech. 654, 99139.10.1017/S0022112010000492CrossRefGoogle Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50 (1), 593627.10.1146/annurev-fluid-122316-045217CrossRefGoogle Scholar
Vandenboomgaerde, M., Rouzier, P., Souffland, D., et al. 2018 Nonlinear growth of the converging Richtmyer–Meshkov instability in a conventional shock tube. Phys. Rev. Fluids 3 (1), 014001.10.1103/PhysRevFluids.3.014001CrossRefGoogle Scholar
Veysset, D., Gutiérrez-Hernández, U., Dresselhaus-Cooper, L., et al. 2018 Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves. Phys. Rev. E 97 (5), 053112.10.1103/PhysRevE.97.053112CrossRefGoogle ScholarPubMed
Ward, G.M. & Pullin, D.I. 2011 A study of planar richtmyer–Meshkov instability in fluids with Mie-grüneisen equations of state. Phys. Fluids 23 (7), 076101.10.1063/1.3607444CrossRefGoogle Scholar
Wouchuk, J.G. & Nishihara, K. 1996 Linear perturbation growth at a shocked interface. Phys. Plasmas 3 (10), 37613776.10.1063/1.871940CrossRefGoogle Scholar
Wu, Z., Li, Y., Lu, L., et al. 2024 Influence of the shock waveturbulence interaction on the swirl distortion in hypersonic inlet. Adv. Aerodyn. 6, 23.10.1186/s42774-024-00183-3CrossRefGoogle Scholar
Youngs, D.L. 1994 Numerical simulation of mixing by rayleigh–Taylor and richtmyer–Meshkov instability. Laser Part. Beams 12, 725750.10.1017/S0263034600008557CrossRefGoogle Scholar
Youngs, D.L. & Williams, R.J. 2008 Turbulent mixing in spherical implosions. Int. J. Numer. Meth. Fl. 56, 1597.10.1002/fld.1594CrossRefGoogle Scholar
Zabusky, N.J. 1999 Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the rayleigh–Taylor and richtmyer–Meshkov environments. Annu. Rev. Fluid Mech. 31, 495536.10.1146/annurev.fluid.31.1.495CrossRefGoogle Scholar
Zhang, Q., Deng, S. & Guo, W. 2018 Quantitative theory for the growth rate and amplitude of the compressible richtmyer–Meshkov instability at all density ratios. Phys. Rev. Lett. 121, 174502.10.1103/PhysRevLett.121.174502CrossRefGoogle ScholarPubMed
Zhang, Q. & Guo, W. 2022 Quantitative theory for spikes and bubbles in the richtmyer–Meshkov instability at arbitrary density ratios. Phys. Rev. Fluids 7 (9), 093904.10.1103/PhysRevFluids.7.093904CrossRefGoogle Scholar
Zhang, Q. & Sohn, S.I. 1997 Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9, 11061124.10.1063/1.869202CrossRefGoogle Scholar
Zheng, Y., Lai, Y., Hu, Y., et al. 2019 Rayleigh–Taylor instability in a confined elastic soft cylinder. J. Mech. Phys. Solids 131, 221229.10.1016/j.jmps.2019.07.006CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh-taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720-722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing, II. Phys. Rep. 723-725, 1160.Google Scholar
Zhou, Y., Sadler, J.D. & Hurricane, O.A. 2025 Instabilities and mixing in inertial confinement fusion. Annu. Rev. Fluid Mech. 57, 197225.10.1146/annurev-fluid-022824-110008CrossRefGoogle Scholar
Supplementary material: File

Deng et al. supplementary movie 1

Evolution of the single-mode air/hydrogel interface accelerated by a planar shock for case 1.
Download Deng et al. supplementary movie 1(File)
File 490.5 KB
Supplementary material: File

Deng et al. supplementary movie 2

Evolution of the single-mode air/hydrogel interface accelerated by a planar shock for case 4.
Download Deng et al. supplementary movie 2(File)
File 521.3 KB
Supplementary material: File

Deng et al. supplementary movie 3

Evolution of the single-mode air/hydrogel interface accelerated by a planar shock for case 5.
Download Deng et al. supplementary movie 3(File)
File 535 KB