Published online by Cambridge University Press: 24 August 2001
A systematic numerical analysis is performed for superharmonic excitations in a wake where a circular cylinder is rotationally oscillated in time. Emphasis is placed on identifying the secondary and tertiary lock-on in the forced wakes. The frequency responses are scrutinized by measuring the lift coefficient (CL). A direct numerical simulation has been conducted to portray the unsteady dynamics of wake flows behind a circular cylinder. The Reynolds number based on the diameter is Re = 106, and the forcing magnitude is 0.10 [les ] Ωmax [les ] 0.40. The tertiary lock-on is observed, where the shedding frequency (St0) is one third of the forcing frequency (Sf), i.e. the 1/3 subharmonic lock-on. The phase shift of CL with respect to the forcing frequency is observed. It is similar to that of the primary lock-on. However, in the secondary superharmonic excitation, modulated oscillations are observed, i.e. the lock-on does not exist. As Ωmax increases, St0 is gradually shifted from the natural shedding frequency (St*0) to lower values. The magnitudes and phases of Sf and St0 are analysed by the phase diagram. The vorticity contours are employed to examine the vortex formation mode against the forcing conditions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.