Published online by Cambridge University Press: 06 April 2011
We investigate the nonlinear wave signature of a translating and oscillating disturbance under the influence of ambient waves in a two-layer fluid. The main interests are the generation and features of the far-field waves due to nonlinear wave resonances. We show, using perturbation theory, that free waves on the surface and/or interface can be produced by triad-resonant interactions, a mechanism not obtained in a homogeneous fluid. These occur among the radiated waves due to the disturbance motion (disturbance waves); and between the disturbance waves and free ocean waves (ambient waves). Such resonance-generated waves can appear upstream or downstream, and may propagate away from or towards the disturbance. In realistic situations where ambient waves and disturbance oscillations contain multiple frequencies, numerous resonant and near-resonant interactions at second and higher orders may occur, making the theoretical analysis of the problem intractable. For this purpose, we develop a direct simulation capability using a high-order spectral method, which provides independent validation of the theoretical predictions. Our investigations show that, under specific but realistic conditions, resonance interactions may lead to significant far-field short waves that are more amenable to remote sensing. If the characteristics of the disturbance are known, we illustrate how nonlinear wave resonances provide a mechanism for more precise estimation of ocean stratification properties using surface wave measurements. Finally we show that when a moving disturbance oscillates at multiple frequencies, ensuing multiple resonances may lead to energy spreading across a broader spectrum, resulting in the loss of information about the body motion.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.