Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T15:17:45.491Z Has data issue: false hasContentIssue false

Resistive-force theory of slender bodies in viscosity gradients

Published online by Cambridge University Press:  19 May 2023

Catherine Kamal*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
Eric Lauga*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
*
Email addresses for correspondence: ck620@cam.ac.uk, e.lauga@damtp.cam.ac.uk
Email addresses for correspondence: ck620@cam.ac.uk, e.lauga@damtp.cam.ac.uk

Abstract

In many natural settings, spatial variations in a fluid's viscosity arise due to changes in its local physico-chemical environment. We consider the low-Reynolds-number dynamics of slender bodies in fluids with a linearly varying viscosity. Assuming the spatial change in viscosity to be small compared to the spatial deviation of the body but large relative to the body's aspect ratio, we derive the modifications to resistive-force theory in a fluid due to a constant viscosity gradient. At leading order in the body slenderness, the results are identical to the classical theory in a constant-viscosity fluid but with the viscosity taking everywhere its local, non-constant value. At next order in slenderness, non-local terms arise due to the non-zero viscosity gradient. We use our results to predict the motion of straight and toroidal filaments settling under the action of gravity. We show that viscosity gradients induce rigid-body rotation of the filaments at a rate proportional to the components of the gradients along the filaments. This result contrasts with constant-viscosity fluids where the filaments do not rotate. We demonstrate further that if the viscosity gradient acts in the direction opposite to the gravitational field, then the filaments rotate towards a stable orientation, whose value depends on the ratio between the viscosity gradients parallel and perpendicular to the gravitational field; otherwise, the filaments align in the direction of the gravitational field. Our work shows that viscosity gradients can exert new forces on slender bodies, which could, for example, be used to control their orientation and drift.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrigo, K.R., Robinson, D.H., Worthen, D.L., Dunbar, R.B., DiTullio, G.R., VanWoert, M. & Lizotte, M.P. 1999 Phytoplankton community structure and the drawdown of nutrients and CO$_2$ in the Southern Ocean. Science 283, 365367.CrossRefGoogle Scholar
Batchelor, G.K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419440.CrossRefGoogle Scholar
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.CrossRefGoogle Scholar
Burgers, J.M. 1938 On the motion of small particles of elongated form suspended in a viscous liquid. Kon. Ned. Akad. Wet. Verhand.(Eerste Sectie) 16, 113184.Google Scholar
Coppola, S. & Kantsler, V. 2021 Green algae scatter off sharp viscosity gradients. Sci. Rep. 11, 17.CrossRefGoogle ScholarPubMed
Cox, R.G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.CrossRefGoogle Scholar
Cox, R.G. 1971 The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. J. Fluid Mech. 45, 625657.CrossRefGoogle Scholar
Dandekar, R. & Ardekani, A.M. 2020 Swimming sheet in a viscosity-stratified fluid. J. Fluid Mech. 895, R2.CrossRefGoogle Scholar
Daniels, M.J., Longland, J.M. & Gilbart, J. 1980 Aspects of motility and chemotaxis in spiroplasmas. Microbiology 118, 429436.CrossRefGoogle Scholar
Datt, C. & Elfring, G.J. 2019 Active particles in viscosity gradients. Phys. Rev. Lett. 123, 158006.CrossRefGoogle ScholarPubMed
Du Roure, O., Lindner, A., Nazockdast, E.N. & Shelley, M.J. 2019 Dynamics of flexible fibers in viscous flows and fluids. Annu. Rev. Fluid Mech. 51, 539572.CrossRefGoogle Scholar
Eastham, P.S. & Shoele, K. 2020 Axisymmetric squirmers in Stokes fluid with nonuniform viscosity. Phys. Rev. Fluids 5, 063102.CrossRefGoogle Scholar
Greenberg, E.P. & Canale-Parola, E. 1977 Motility of flagellated bacteria in viscous environments. J. Bacteriol. 132, 356358.CrossRefGoogle ScholarPubMed
Guadayol, Ò., Mendonca, T., Segura-Noguera, M., Wright, A.J., Tassieri, M. & Humphries, S. 2021 Microrheology reveals microscale viscosity gradients in planktonic systems. Proc. Natl Acad. Sci. USA 118 (1), e2011389118.CrossRefGoogle ScholarPubMed
Guyon, E., Hulin, J.-P., Petit, L. & Mitescu, C.D. 2015 Physical Hydrodynamics. Oxford University Press.CrossRefGoogle Scholar
Han, K., Shields IV, C.W. & Velev, O.D. 2018 Engineering of self-propelling microbots and microdevices powered by magnetic and electric fields. Adv. Funct. Mater. 28, 1705953.CrossRefGoogle Scholar
Kim, S. & Karrila, S.J. 2013 Microhydrodynamics: Principles and Selected Applications. Courier Corporation.Google Scholar
Koens, L. & Lauga, E. 2017 Analytical solutions to slender-ribbon theory. Phys. Rev. Fluids 2, 084101.CrossRefGoogle Scholar
Lauga, E. 2020 The Fluid Dynamics of Cell Motility. Cambridge University Press.CrossRefGoogle Scholar
Laumann, M. & Zimmermann, W. 2019 Focusing and splitting streams of soft particles in microflows via viscosity gradients. Euro. Phys. J. E 42, 111.CrossRefGoogle ScholarPubMed
Li, G., Lauga, E. & Ardekani, A.M. 2021 Microswimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 297, 104655.CrossRefGoogle Scholar
Liebchen, B., Monderkamp, P., Ten Hagen, B. & Löwen, H. 2018 Viscotaxis: microswimmer navigation in viscosity gradients. Phys. Rev. Lett. 120, 208002.CrossRefGoogle ScholarPubMed
López, C.E., Gonzalez-Gutierrez, J., Solorio-Ordaz, F., Lauga, E. & Zenit, R. 2021 Dynamics of a helical swimmer crossing viscosity gradients. Phys. Rev. Fluids 6, 083102.CrossRefGoogle Scholar
Mirbagheri, S.A. & Fu, H.C. 2016 Helicobacter pylori couples motility and diffusion to actively create a heterogeneous complex medium in gastric mucus. Phys. Rev. Lett. 116, 198101.CrossRefGoogle ScholarPubMed
Ottemann, K.M. & Lowenthal, A.C. 2002 Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70, 19841990.CrossRefGoogle ScholarPubMed
Petrino, M.G. & Doetsch, R.N. 1978 ‘Viscotaxis’, a new behavioural response of Leptospira interrogans (biflexa) strain B16. Microbiology 109, 113117.Google ScholarPubMed
Shaik, V.A. & Elfring, G.J. 2021 Hydrodynamics of active particles in viscosity gradients. Phys. Rev. Fluids 6, 103103.CrossRefGoogle Scholar
Stehnach, M.R., Waisbord, N., Walkama, D.M. & Guasto, J.S. 2021 Viscophobic turning dictates microalgae transport in viscosity gradients. Nat. Phys. 17, 926930.CrossRefGoogle Scholar
Swidsinski, A., Sydora, B.C., Doerffel, Y., Loening-Baucke, V., Vaneechoutte, M., Lupicki, M., Scholze, J., Lochs, H. & Dieleman, L.A. 2007 Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm. Bowel Dis. 13, 963970.CrossRefGoogle ScholarPubMed
Takabe, K., Tahara, H., Islam, M.S., Affroze, S., Kudo, S. & Nakamura, S. 2017 Viscosity-dependent variations in the cell shape and swimming manner of Leptospira. Microbiology 163, 153160.CrossRefGoogle ScholarPubMed
Taylor, G.I. 1967 Film notes for low-Reynolds-number flows. Rep. 21617. National Committee for Fluid Mechanics Films.Google Scholar
Tillett, J.P.K. 1970 Axial and transverse Stokes flow past slender axisymmetric bodies. J. Fluid Mech. 44, 401417.CrossRefGoogle Scholar
Tuck, E.O. 1964 Some methods for flows past blunt slender bodies. J. Fluid Mech. 18, 619635.CrossRefGoogle Scholar
Wheeler, K.M., Cárcamo-Oyarce, G., Turner, B.S., Dellos-Nolan, S., Co, J.Y., Lehoux, S., Cummings, R.D., Wozniak, D.J. & Ribbeck, K. 2019 Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat. Microbiol. 4, 21462154.CrossRefGoogle ScholarPubMed

Kamal and Lauga Supplementary Movie 1

See "Kamal and Lauga Supplementary Movie Captions"
Download Kamal and Lauga Supplementary Movie 1(Video)
Video 926.8 KB

Kamal and Lauga Supplementary Movie 2

See "Kamal and Lauga Supplementary Movie Captions"

Download Kamal and Lauga Supplementary Movie 2(Video)
Video 939.2 KB

Kamal and Lauga Supplementary Movie 3

See "Kamal and Lauga Supplementary Movie Captions"

Download Kamal and Lauga Supplementary Movie 3(Video)
Video 602 KB
Supplementary material: PDF

Kamal and Lauga Supplementary Movie Captions

Kamal and Lauga Supplementary Movie Captions

Download Kamal and Lauga Supplementary Movie Captions(PDF)
PDF 99.7 KB