No CrossRef data available.
Article contents
Reflection of a rightward-moving shock wave over a steady oblique shock with post-formed expansion wave
Published online by Cambridge University Press: 02 April 2025
Abstract
Reflection of a rightward-moving shock over a steady oblique shock, equivalent to a shock-on-shock interaction, is typically studied with post-formed shock waves. Law, Felthun and Skews (Shock Waves, vol. 13, 2003, pp. 381–394) reported post-formed expansion fan (PFEF) reflection for second-family incident shock. Here, we show that PFEF reflection also exists for first-family incident shock. We derive the critical condition for PFEF reflection in the shock speed Mach number and incident shock angle plane. Our findings indicate PFEF emergence near type post-I region. Numerical simulations reveal that PFEF with rising incident angle can intersect the incident shock, triple point or Mach stem, echoing the Hillier (J. Fluid Mech., vol. 575, 2007, pp. 399–424) three-type classification of shock–expansion fan interactions. The complex shock reflection pattern is essentially composed of an upstream structure linked to the moving shock wave, and a downstream structure linked to the unperturbed oblique shock wave. Under the conditions investigated, the upstream structure is characterized by a Mach reflection of the incident shock over the wall, potentially featuring a triple point formed within the Mach stem. Below this triple point, there is a curved segment of the Mach stem that is close to the wall. As the inclined angle increases, the curved shock may expand and interact with the incident shock, leading to an asymmetric regular reflection, which is a phenomenon that has not been observed previously. The downstream structure is a double $\lambda$ shock structure, with the lower shock resulting from the generation of recompression shock waves.
JFM classification
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press