Hostname: page-component-6bf8c574d5-n2sc8 Total loading time: 0 Render date: 2025-03-09T06:02:59.894Z Has data issue: false hasContentIssue false

Reduced representations of Rayleigh–Bénard flows via autoencoders

Published online by Cambridge University Press:  05 March 2025

Melisa Y. Vinograd
Affiliation:
Departamento de Ingeniería, Universidad de San Andrés, Buenos Aires, Victoria 1644, Argentina Departamento de Física, Universidad de Buenos Aires, CABA 1868, Argentina
Patricio Clark Di Leoni*
Affiliation:
Departamento de Ingeniería, Universidad de San Andrés, Buenos Aires, Victoria 1644, Argentina CONICET, CABA 1414, Argentina
*
Corresponding author: Patricio Clark Di Leoni, pclarkdileoni@udesa.edu.ar

Abstract

We analysed the performance of convolutional autoencoders in generating reduced-order representations of the temperature field of two-dimensional Rayleigh–Bénard flows at $\textit{Pr} =1$ and Rayleigh numbers extending from $10^6$ to $10^8$, capturing the range where the flow transitions to turbulence. We present a way of estimating the minimum number of dimensions needed by the autoencoders to capture all the relevant physical scales of the data that is more apt for highly multiscale flows than previous criteria applied to lower-dimensional systems. We compare our architecture with two regularized variants as well as with linear methods, and find that manually fixing the dimension of the latent space produces the best results. We show how the estimated minimum dimension presents a sharp increase around $Ra\sim 10^7$, when the flow starts to transition to turbulence. Furthermore, we show how this dimension does not follow the same scaling as the physically relevant scales, such as the dissipation length scale and the thermal boundary layer.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agasthya, L., Clark Di Leoni, P., & Biferale, L. 2022 Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using nudging. Phys. Fluids 34 (1), 015128.CrossRefGoogle Scholar
Brunton, S.L. & Kutz, J. 2019 Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press.CrossRefGoogle Scholar
Budanur, N.B., Cvitanović, P., Davidchack, R.L. & Siminos, E. 2015 Reduction of SO(2) symmetry for spatially extended dynamical systems. Phys. Rev. Lett. 114 (8), 084102.CrossRefGoogle ScholarPubMed
Castillo-Castellanos, A., Sergent, A., Podvin, B. & Rossi, M. 2019 Cessation and reversals of large-scale structures in square Rayleigh–Bénard cells. J. Fluid Mech. 877, 922954.CrossRefGoogle Scholar
Chandler, G.J. & Kerswell, R.R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554595.CrossRefGoogle Scholar
Chen, R.T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. 2019 Neural ordinary differential equations. arXiv:1806.07366 Google Scholar
Constante-Amores, C., Linot, A.J. & Graham, M.D. 2024 Dynamics of a data-driven low-dimensional model of turbulent minimal pipe flow. arXiv:2408.03135.Google Scholar
Crowley, C. J., Pughe-Sanford, J.L., Toler, W., Krygier, M.C., Grigoriev, R.O. & Schatz, M.F. 2022 Turbulence tracks recurrent solutions. Proc. Natl Acad. Sci. USA 119 (34), e2120665119.CrossRefGoogle ScholarPubMed
De, J., Pérez, C.E. & Graham, M.D. 2023 Data-driven low-dimensional dynamic model of Kolmogorov flow. Phys. Rev. Fluids 8 (4), 044402.Google Scholar
Ding, X., Chate, H., Cvitanovic, P., Siminos, E. & Takeuchi, K. 2016 Estimating the dimension of an inertial manifold from unstable periodic orbits. Phys. Rev. Lett. 117(2), 024101.CrossRefGoogle ScholarPubMed
Eivazi, H., Le Clainche, S., Hoyas, S., & Vinuesa, R. 2022 Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows. Expert Syst. Appl. 202, 117038.CrossRefGoogle Scholar
Floryan, D. & Graham, M.D. 2022 Data-driven discovery of intrinsic dynamics. Nat. Mach. Intell. 4 (12), 11131120.CrossRefGoogle Scholar
Foias, C., Sell, G.R. & Temam, R. 1988 Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73 (2), 309353.CrossRefGoogle Scholar
Foldes, R., Camporeale, E. & Marino, R. 2024 Low-dimensional representation of intermittent geophysical turbulence with high-order statistics-informed neural networks (H-siNN). Phys. Fluids 36 (2), 026607.CrossRefGoogle Scholar
Fontana, M., Bruno, O.P., Mininni, P.D. & Dmitruk, P. 2020 Fourier continuation method for incompressible fluids with boundaries. Comput. Phys. Commun. 256, 107482.CrossRefGoogle Scholar
Fukami, K., Nakamura, T. & Fukagata, K. 2020 Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data. Phys. Fluids 32 (9), 095110.CrossRefGoogle Scholar
Goodfellow, I. J., Bengio, Y. & Courville, A. 2016 Deep Learning. MIT Press.Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Hartmann, D.L., Moy, L.A. & Fu, Q. 2001 Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14 (24), 44954511.2.0.CO;2>CrossRefGoogle Scholar
Hinton, G. & Salakhutdinov, R. 2006 Reducing the dimensionality of data with neural networks. Science 313(5786), 504507,CrossRefGoogle ScholarPubMed
Hopf, E. 1948 A mathematical example displaying features of turbulence. Commun. Pure Appl. Maths 1 (4), 303322.CrossRefGoogle Scholar
Hyman, J.M. & Nicolaenko, B. 1986 The Kuramoto–Sivashinsky equation: a bridge between PDE’S and dynamical systems. Physica D: Nonlinear Phenom. 18 (1), 113126.CrossRefGoogle Scholar
Jing, L., Zbontar, J. & Lecun, Y. 2020 Implicit rank-minimizing autoencoder. In Advances in Neural Information Processing Systems (ed. H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan & H. Lin), vol. 33, pp. 1473614746. Curran Associates.Google Scholar
Kooloth, P., Sondak, D. & Smith, L.M. 2021 Coherent solutions and transition to turbulence in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Fluids 6 (1), 013501.CrossRefGoogle Scholar
Linot, A.J. & Graham, M.D. 2020 Deep learning to discover and predict dynamics on an inertial manifold. Phys. Rev. E 101 (6), 062209.CrossRefGoogle Scholar
Linot, A.J. & Graham, M.D. 2022 Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations. Chaos: Interdisciplinary J. Nonlinear Sci. 32 (7), 073110.CrossRefGoogle ScholarPubMed
Linot, A.J. & Graham, M.D. 2023 Dynamics of a data-driven low-dimensional model of turbulent minimal Couette flow. J. Fluid Mech. 973, A42.CrossRefGoogle Scholar
Page, J., Brenner, M.P. & Kerswell, R.R. 2021 Revealing the state space of turbulence using machine learning. Phys. Rev. Fluids 6 (3), 034402.CrossRefGoogle Scholar
Page, J., Holey, J., Brenner, M.P. & Kerswell, R.R. 2023 Exact coherent structures in two-dimensional turbulence identified with convolutional autoencoders. arXiv:2309.12754.CrossRefGoogle Scholar
Pandey, S., Teutsch, P., Mäder, P. & Schumacher, J. 2022 Direct data-driven forecast of local turbulent heat flux in Rayleigh–Bénard convection. Phys. Fluids 34 (4), 045106.CrossRefGoogle Scholar
Pedregosa, F., et al. 2011 Scikit-learn: machine learning in python. J. Machine Learning Res. 12, 28252830.Google Scholar
Scheel, J.D., Emran, M.S. & Schumacher, J. 2013 Resolving the fine-scale structure in turbulent Rayleigh–Bénard convection. New J. Phys. 15 (11), 113063.CrossRefGoogle Scholar
Siggia, E. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26 (1), 137168.CrossRefGoogle Scholar
Sondak, D. & Protopapas, P. 2021 Learning a reduced basis of dynamical systems using an autoencoder. Phys. Rev. E 104 (3), 034202.CrossRefGoogle ScholarPubMed
Sugiyama, K., Ni, R., Stevens, R.J., Chan, T. S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105 (3), 034503.CrossRefGoogle ScholarPubMed
Temam, R. 1990 Inertial manifolds. Math. Intell. 12 (4), 6874.CrossRefGoogle Scholar
Våge, K., Papritz, L., Håvik, L., Spall, M.A. & Moore, G. 2018 Ocean convection linked to the recent ice edge retreat along east Greenland. Nat. Commun. 9 (1), 1287.CrossRefGoogle Scholar
van der, P., Erwin, P., Stevens, R.J., Sugiyama, K. & Lohse, D. 2012 Flow states in two-dimensional Rayleigh–Bénard convection as a function of aspect-ratio and Rayleigh number. Phys. Fluids 24 (8), 085104.CrossRefGoogle Scholar
Willis, A.P., Short, K.Y. & Cvitanović, P. 2016 Symmetry reduction in high dimensions, illustrated in a turbulent pipe. Phys. Rev. E 93 (2), 022204.CrossRefGoogle Scholar
Zeng, K. & Graham, M.D. 2023 Autoencoders for discovering manifold dimension and coordinates in data from complex dynamical systems. arXiv:2305.01090.CrossRefGoogle Scholar
Zhu, X., Mathai, V., Stevens, R.J., Verzicco, R. & Lohse, D. 2018 Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Lett. 120 (14), 144502.CrossRefGoogle Scholar