Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T06:24:52.095Z Has data issue: false hasContentIssue false

Reactive control of second Mack mode in a supersonic boundary layer with free-stream velocity/density variations

Published online by Cambridge University Press:  05 January 2023

Pierre Nibourel*
Affiliation:
ONERA-DAAA, Université Paris-Saclay, 8 Rue des Vertugadins, 92190 Meudon, France
Colin Leclercq
Affiliation:
ONERA-DAAA, Université Paris-Saclay, 8 Rue des Vertugadins, 92190 Meudon, France
Fabrice Demourant
Affiliation:
ONERA-DTIS, 2 Avenue Edouard Belin, 31000 Toulouse, France
Eric Garnier
Affiliation:
ONERA-DAAA, Université Paris-Saclay, 8 Rue des Vertugadins, 92190 Meudon, France
Denis Sipp
Affiliation:
ONERA-DAAA, Université Paris-Saclay, 8 Rue des Vertugadins, 92190 Meudon, France
*
Email address for correspondence: pierre.nibourel@onera.fr

Abstract

We consider closed-loop control of a two-dimensional supersonic boundary layer at $M=4.5$ that aims at reducing the linear growth of second Mack mode instabilities. These instabilities are first characterized with local spatial and global resolvent analyses, which allow us to refine the control strategy and to select appropriate actuators and sensors. After linear input–output reduced-order models have been identified, multi-criteria structured mixed $H_{2}$/$H_{\infty }$ synthesis allows us to fix beforehand the controller structure and to minimize appropriate norms of various transfer functions: the $H_{2}$ norm to guarantee performance (reduction of perturbation amplification in nominal condition), and the $H_{\infty }$ norm to maintain performance robustness (with respect to sensor noise) and stability robustness (with respect to uncertain free-stream velocity/density variations). Both feedforward and feedback set-ups, i.e. with estimation sensor placed respectively upstream/downstream of the actuator, allow us to maintain the local perturbation energy below a given threshold over a significant distance downstream of the actuator, even in the case of noisy estimation sensors or free-stream density variations. However, the feedforward set-up becomes completely ineffective when convective time delays are altered by free-stream velocity variations of $\pm$5 %, which highlights the strong relevance of the feedback set-up for performance robustness in convectively unstable flows.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amestoy, P.R., Duff, I.S., L'Excellent, J.-Y. & Koster, J. 2001 A fully asynchronous multifrontal solver using distributed dynamic scheduling, vol. 23. SIAM.Google Scholar
Apkarian, P., Gahinet, P. & Buhr, C. 2014 Multi-model, multi-objective tuning of fixed-structure controllers. In 2014 European Control Conference (ECC), pp. 856–861. IEEE.CrossRefGoogle Scholar
Apkarian, P. & Noll, D. 2006 Nonsmooth $H_{\infty }$ synthesis. IEEE Trans. Autom. Control 51, 7186.CrossRefGoogle Scholar
Apkarian, P., Noll, D. & Rondepierre, A. 2010 Mixed $H_{2}$/$H_{\infty }$ control via nonsmooth optimization. In Proceedings of the IEEE Conference on Decision and Control, vol. 47, pp. 6460–6465. IEEE.CrossRefGoogle Scholar
Bagheri, S., Brandt, L. & Henningson, D.S. 2009 Input–output analysis, model reduction and control of the flat-plate boundary layer. J.Fluid Mech. 620, 263298.CrossRefGoogle Scholar
Barbagallo, A., Dergham, G., Sipp, D., Schmid, P.J. & Robinet, J.-C. 2012 Closed-loop control of unsteadiness over a rounded backward-facing step. J.Fluid Mech. 703, 326362.CrossRefGoogle Scholar
Barbagallo, A., Sipp, D. & Schmid, P.J. 2009 Closed-loop control of an open cavity flow using reduced-order models. J.Fluid Mech. 641, 150.CrossRefGoogle Scholar
Belson, B.A., Semeraro, O., Rowley, C.W. & Henningson, D.S. 2013 Feedback control of instabilities in the two-dimensional Blasius boundary layer: the role of sensors and actuators. Phys. Fluids 25, 054106.CrossRefGoogle Scholar
Beneddine, S. 2017 Characterization of unsteady flow behavior by linear stability analysis. PhD thesis, Université Paris-Saclay.Google Scholar
Beneddine, S., Mettot, C. & Sipp, D. 2015 Global stability analysis of underexpanded screeching jets. Eur. J. Mech. (B/Fluids) 49, 392399.CrossRefGoogle Scholar
Bugeat, B., Chassaing, J.-C., Robinet, J.-C. & Sagaut, P. 2019 3D global optimal forcing and response of the supersonic boundary layer. J.Comput. Phys. 398, 108888.CrossRefGoogle Scholar
Cambier, L., Heib, S. & Plot, S. 2013 The Onera elsA CFD sofware: input from research and feedback from industry. Mech. Ind. 14, 159174.CrossRefGoogle Scholar
Celep, M., Hadjadj, A., Shadloo, M.S., Sharma, S., Yildiz, M. & Kloker, M.J. 2022 Effect of streak employing control of oblique-breakdown in a supersonic boundary layer with weak wall heating/cooling. Phys. Rev. Fluids 7, 053904.CrossRefGoogle Scholar
Chen, J., Zhou, K. & Chang, B.-C. 1994 Closed-loop controller reduction by a structured truncation approach. In Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol. 3, pp. 2726–2731. IEEE.Google Scholar
Dadfar, R., Fabbiane, N., Bagheri, S. & Henningson, D.S. 2014 Centralised versus decentralised active control of boundary layer instabilities. Flow, Turbul. Combust. 93, 537553.CrossRefGoogle Scholar
Dadfar, R., Semeraro, O., Hanifi, A. & Henningson, D.S. 2013 Output feedback control of Blasius flow with leading edge using plasma actuator. AIAA J. 51, 21922207.CrossRefGoogle Scholar
Doyle, J. 1978 Guaranteed margins for LQG regulators. IEEE Trans. Autom. Control 23, 756757.CrossRefGoogle Scholar
Doyle, J., Glover, K., Khargonekar, P.P. & Francis, B.A. 1989 State-space solutions to standard $H_{2}$ and $H_{\infty }$ control problems. IEEE Trans. Autom. Control 34, 831847.CrossRefGoogle Scholar
Doyle, J. & Stein, G. 1981 Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans. Autom. Control 26, 416.CrossRefGoogle Scholar
Drmac, Z., Gugercin, S. & Beattie, C. 2015 Quadrature-based vector fitting for discretized $H_{2}$ approximation. SIAM J. Sci. Comput. 2, A625A652.CrossRefGoogle Scholar
Erdmann, R., Pätzold, A., Engert, M., Peltzer, I. & Nitsche, W. 2011 On active control of laminar–turbulent transition on two-dimensional wings. Phil. Trans. R. Soc. A 369 (1940), 13821395.CrossRefGoogle ScholarPubMed
Fabbiane, N., Bagheri, S., & Henningson, D.S. 2017 Energy efficiency and performance limitations of linear adaptive control for transition delay. J.Fluid Mech. 810, 6081.CrossRefGoogle Scholar
Fabbiane, N., Semeraro, O., Bagheri, S. & Henningson, D.S. 2014 Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev. 66, 60801.CrossRefGoogle Scholar
Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S. & Henningson, D.S. 2015 On the role of adaptivity for robust laminar flow control. J.Fluid Mech. 767.CrossRefGoogle Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Fedorov, A. & Tumin, A. 2022 The Mack's amplitude method revisited. Theor. Comput. Fluid Dyn. 36, 924.CrossRefGoogle Scholar
Flinois, T.L.B. & Morgans, A.S. 2016 Feedback control of unstable flows: a direct modelling approach using the eigensystem realisation algorithm. J.Fluid Mech. 793, 4178.CrossRefGoogle Scholar
Franklin, G.F., Powell, J.D. & Workman, M.L. 1997 Digital Control of Dynamic Systems – Third Edition. Prentice Hall.Google Scholar
Freire, G.A., Cavalieri, A.V.G., Silvestre, F.J., Hanifi, A. & Henningson, D.S. 2020 Actuator and sensor placement for closed-loop control of convective instabilities. Theor. Comput. Fluid Dyn. 34, 619641.CrossRefGoogle Scholar
Gad-el Hak, M. 2000 Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press.CrossRefGoogle Scholar
Gaponov, S.A. & Smorodsky, B.V. 2016 Supersonic turbulent boundary layer drag control using spanwise wall oscillation. Intl J. Theor. Appl. Mech. 1, 97103.Google Scholar
Gear, C.W. 1971 Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall.Google Scholar
Glad, T. & Ljung, L. 2000 Control Theory. Taylor & Francis.Google Scholar
Goddard, P.J. & Glover, K. 1995 Performance-preserving controller approximation. PhD thesis, University of Cambridge.Google Scholar
Hanifi, A., Schmid, P.J. & Henningson, D.S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8, 826.CrossRefGoogle Scholar
Hervé, A., Sipp, D., Schmid, P.J. & Samuelides, M. 2012 A physics-based approach to flow control using system identification. J.Fluid Mech. 702, 2658.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Jahanbakhshi, R. & Zaki, T.A. 2021 Optimal heat flux for delaying transition to turbulence in a high-speed boundary layer. J.Fluid Mech. 916, A46.CrossRefGoogle Scholar
Juang, J.-N. & Pappa, R.S. 1985 An eigensystem realization algorithm for modal parameter identification and model reduction. J.Guid. Control Dyn. 8, 620627.CrossRefGoogle Scholar
Juillet, F., Schmid, P.J. & Huerre, P. 2013 Control of amplifier flows using subspace identification techniques. J.Fluid Mech. 725, 522565.CrossRefGoogle Scholar
Juliano, T.J., Borg, M.P. & Schneider, S.P. 2015 Quiet tunnel measurements of HIFiRE-5 boundary-layer transition. AIAA J. 53, 19801993.CrossRefGoogle Scholar
Kalman, R. 1964 When is a linear control system optimal. J.Basic Engng 86, 5160.CrossRefGoogle Scholar
Kendall, J.M. 1975 Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition. AIAA J. 13, 290.CrossRefGoogle Scholar
Kwakernaak, H. 1969 Optimal low-sensitivity linear feedback systems. Automatica 5, 279285.CrossRefGoogle Scholar
Leclercq, C., Demourant, F., Poussot-Vassal, C. & Sipp, D. 2019 Linear iterative method for closed-loop control of quasiperiodic flows. J.Fluid Mech. 868, 2265.CrossRefGoogle Scholar
van Leer, B. 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J.Comput. Phys. 32, 101136.CrossRefGoogle Scholar
Lehoucq, R., Sorensen, D. & Yang, C. 1998 Arpack users’ guide: solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM 6.Google Scholar
Liou, M.-S. 2006 A sequel to AUSM, Part II: Ausm$^{+}$-up for all speeds. J.Comput. Phys. 214, 137170.CrossRefGoogle Scholar
Lugrin, M., Nicolas, F., Severac, N., Tobeli, J.-P., Beneddine, S., Garnier, E., Esquieu, S. & Bur, R. 2022 Transitional shockwave/boundary layer interaction experiments in the R2Ch blowdown wind tunnel. Exp. Fluids 63, 46.CrossRefGoogle Scholar
Ma, Y. & Zhong, X. 2003 Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions. J.Fluid Mech. 488, 3178.CrossRefGoogle Scholar
Mack, L.M. 1977 Transition and laminar instability. NASA Tech. Rep. CP 153203.Google Scholar
Mack, L.M. 1984 Boundary-layer linear stability theory. AGARD Report No. 709.Google Scholar
Malik, M.R. 1989 Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J. 27, 14871493.CrossRefGoogle Scholar
McKelvey, T. & Helmersson, A. 1996 State-space parametrizations of multivariable linear systems using tridiagonal matrix forms. In Proceedings of 35th IEEE Conference on Decision and Control, vol. 4, pp. 3654–3659. IEEE.Google Scholar
Morkovin, M.V. 1969 On the many faces of transition. In Viscous Drag Reduction (ed. C. Sinclair Wells). Springer US.CrossRefGoogle Scholar
Morra, P., Sasaki, K., Hanifi, A., Cavalieri, A.V.G. & Henningson, D.S. 2020 A realizable data-driven approach to delay bypass transition with control theory. J.Fluid Mech. 883, A33.CrossRefGoogle Scholar
Olazabal-Loume, M., Danvin, F., Mathiaud, J. & Aupoix, B. 2017 Study on $k$$\omega$ shear stress transport model corrections applied to rough wall turbulent hypersonic boundary layers. In Seventh European Conference for Aeronautics and Space Sciences. doi:10.13009/EUCASS2017-604.CrossRefGoogle Scholar
Orr, W.F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II. A viscous liquid. Proc. R. Irish Acad. A 27, 69138.Google Scholar
Ramesh, A.V., Utku, S. & Garba, J.A. 1989 Computational complexities and storage requirements of some Riccati equation solvers. J.Guid. Control Dyn. 12, 469479.CrossRefGoogle Scholar
Saint-James, J. 2020 Prévision de la transition laminaire–turbulent dans le code elsA. Extension de la méthode des paraboles aux parois chauffées. PhD thesis, Institut Supérieur de l'Aéronautique et de l'Espace (ISAE).Google Scholar
Sasaki, K., Morra, P., Cavalieri, A.V.G., Hanifi, A. & Henningson, D.S. 2020 On the role of actuation for the control of streaky structures in boundary layers. J.Fluid Mech. 883, A34.CrossRefGoogle Scholar
Sasaki, K., Morra, P., Fabbiane, N., Cavalieri, A.V.G., Hanifi, A. & Henningson, D.S. 2018 a On the wave-cancelling nature of boundary layer flow control. Theor. Comput. Fluid Dyn. 32, 593616.CrossRefGoogle Scholar
Sasaki, K., Tissot, G., Cavalieri, A.V.G., Silvestre, F.J., Jordan, P. & Biau, D. 2018 b Closed-loop control of a free shear flow: a framework using the parabolized stability equations. Theor. Comput. Fluid Dyn. 32, 765788.CrossRefGoogle Scholar
Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P.J. & Sipp, D. 2016 Linear control of oscillator and amplifier flows. Phys. Rev. Fluids 1, 040501.CrossRefGoogle Scholar
Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D.S. 2011 Feedback control of three-dimensional optimal disturbances using reduced-order models. J.Fluid Mech. 677, 63102.CrossRefGoogle Scholar
Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D.S. 2013 a Transition delay in a boundary layer flow using active control. J.Fluid Mech. 731, 288311.CrossRefGoogle Scholar
Semeraro, O., Pralits, J.O., Rowley, C.W. & Henningson, D.S. 2013 b Riccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. J.Fluid Mech. 731, 394417.CrossRefGoogle Scholar
Shaqarin, T., Oswald, P., Noack, B.R. & Semaan, R. 2021 Drag reduction of a D-shaped bluff-body using linear parameter varying control. Phys. Fluids 33, 077108.CrossRefGoogle Scholar
Sharma, S., Shadloo, M.S., Hadjadj, A. & Kloker, M.J. 2019 Control of oblique-type breakdown in a supersonic boundary layer employing streaks. J.Fluid Mech. 873, 10721089.CrossRefGoogle Scholar
Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A. 2010 Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63, 030801.CrossRefGoogle Scholar
Sipp, D. & Schmid, P.J. 2016 Linear closed-loop control of fluid instabilities and noise-induced perturbations: a review of approaches and tools. Appl. Mech. Rev. 68, 020801.CrossRefGoogle Scholar
Skogestad, S. & Postlethwaite, I. 2005 Multivariable Feedback Control: Analysis and Design. Wiley & Son.Google Scholar
Smith, A.M.O. & Gamberoni, N. 1956 Transition, Pressure Gradient and Stability Theory. Douglas Aircraft Company.Google Scholar
Stroh, A., Frohnapfel, B., Schlatter, P. & Hasegawa, Y. 2015 A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys. Fluids 27 (7), 075101.CrossRefGoogle Scholar
Tol, H.J., Kotsonis, M. & de Visser, C.C. 2019 Pressure output feedback control of Tollmien–Schlichting waves in Falkner–Skan boundary layers. AIAA J. 57, 114.CrossRefGoogle Scholar
Tol, H.J., Kotsonis, M., De Visser, C.C. & Bamieh, B. 2017 Localised estimation and control of linear instabilities in two-dimensional wall-bounded shear flows. J.Fluid Mech. 824, 818865.CrossRefGoogle Scholar
Vemuri, S.H.S., Bosworth, R., Morrison, J.F. & Kerrigan, E.C. 2018 Real-time feedback control of three-dimensional Tollmien–Schlichting waves using a dual-slot actuator geometry. Phys. Rev. Fluids 3, 053903.CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2019 Supersonic turbulent boundary layer drag control using spanwise wall oscillation. J.Fluid Mech. 880, 388429.CrossRefGoogle Scholar
Zhang, Z. & Freudenberg, J.S. 1987 Loop transfer recovery with non-minimum phase zeros. In 26th IEEE Conference on Decision and Control, vol. 26, pp. 956–957. IEEE.CrossRefGoogle Scholar