Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T11:48:39.039Z Has data issue: false hasContentIssue false

Rayleigh–Taylor instability in impact cratering experiments

Published online by Cambridge University Press:  28 February 2022

V. Lherm*
Affiliation:
Department of Earth and Environmental Sciences, University of Rochester, 227 Hutchison Hall, Rochester, NY 14627, USA Univ. Lyon, ENSL, UCBL, UJM, CNRS, LGL-TPE, F-69007 Lyon, France
R. Deguen
Affiliation:
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France
T. Alboussière
Affiliation:
Univ. Lyon, ENSL, UCBL, UJM, CNRS, LGL-TPE, F-69007 Lyon, France
M. Landeau
Affiliation:
Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75005 Paris, France
*
Email address for correspondence: victor.lherm@ens-lyon.fr

Abstract

When a liquid drop strikes a deep pool of a target liquid, an impact crater opens while the liquid of the drop decelerates and spreads on the surface of the crater. When the density of the drop is larger than the target liquid, we observe mushroom-shaped instabilities growing at the interface between the two liquids. We interpret this instability as a spherical Rayleigh–Taylor instability due to the deceleration of the interface, which exceeds the ambient gravity. We investigate experimentally the effect of the density contrast and the impact Froude number, which measures the importance of the impactor kinetic energy to gravitational energy, on the instability and the resulting mixing layer. Using backlighting and planar laser-induced fluorescence methods, we obtain the position of the air–liquid interface, an estimate of the instability wavelength, and the thickness of the mixing layer. We derive a model for the evolution of the crater radius from an energy conservation. We then show that the observed dynamics of the mixing layer results from a competition between the geometrical expansion of the crater, which tends to thin the layer, and entrainment related to the instability, which increases the layer thickness. The mixing caused by this instability has geophysical implications for the impacts that formed terrestrial planets. Extrapolating our scalings to planets, we estimate the mass of silicates that equilibrates with the metallic core of the impacting bodies.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agbaglah, G., Josserand, C. & Zaleski, S. 2013 Longitudinal instability of a liquid rim. Phys. Fluids 25 (2), 022103.CrossRefGoogle Scholar
Agnor, C. & Asphaug, E. 2004 Accretion efficiency during planetary collisions. Astrophys. J. 613 (2), L157L160.CrossRefGoogle Scholar
Agnor, C.B., Canup, R.M. & Levison, H.F. 1999 On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142 (1), 219237.CrossRefGoogle Scholar
Allen, R.F. 1975 The role of surface tension in splashing. J. Colloid Interface Sci. 51 (2), 350351.CrossRefGoogle Scholar
Arnett, W.D., Bahcall, J.N., Kirshner, R.P. & Woosley, S.E. 1989 Supernova 1987A. Annu. Rev. Astron. Astrophys. 27 (1), 629700.CrossRefGoogle Scholar
Badro, J., Aubert, J., Hirose, K., Nomura, R., Blanchard, I., Borensztajn, S. & Siebert, J. 2018 Magnesium partitioning between Earth's mantle and core and its potential to drive an early exsolution geodynamo. Geophys. Res. Lett. 45(24), 1324013248.CrossRefGoogle Scholar
Badro, J., Brodholt, J.P., Piet, H., Siebert, J. & Ryerson, F.J. 2015 Core formation and core composition from coupled geochemical and geophysical constraints. Proc. Natl Acad. Sci. 112 (40), 1231012314.CrossRefGoogle ScholarPubMed
Balakrishnan, K. & Menon, S. 2011 Characterization of the mixing layer resulting from the detonation of heterogeneous explosive charges. Flow Turbul. Combust. 87 (4), 639671.CrossRefGoogle Scholar
Bell, G.I. 1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. LA-1321. Los Alamos Scientific Laboratory.Google Scholar
Berberović, E., van Hinsberg, N.P., Jakirlić, S., Roisman, I.V. & Tropea, C. 2009 Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79 (3), 036306.CrossRefGoogle ScholarPubMed
Bisighini, A., Cossali, G.E., Tropea, C. & Roisman, I.V. 2010 Crater evolution after the impact of a drop onto a semi-infinite liquid target. Phys. Rev. E 82 (3), 036319.CrossRefGoogle ScholarPubMed
Blanken, N., Saleem, M.S., Thoraval, M.-J. & Antonini, C. 2021 Impact of compound drops: a perspective. Curr. Opin. Colloid Interface Sci. 51, 101389.CrossRefGoogle Scholar
Canup, R.M. 2004 Simulations of a late lunar-forming impact. Icarus 168 (2), 433456.CrossRefGoogle Scholar
Canup, R.M. 2012 Forming a moon with an earth-like composition via a giant impact. Science 338 (6110), 10521055.CrossRefGoogle Scholar
Chambers, J. 2010 Terrestrial planet formation. In Exoplanets (ed. S. Seager), pp. 297–317. University of Arizona Press.Google Scholar
Chandrasekhar, S. 1955 The character of the equilibrium of an incompressible fluid sphere of variable density and viscosity subject to radial acceleration. Q. J. Mech. Appl. Maths 8 (1), 121.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Corgne, A., Keshav, S., Fei, Y. & McDonough, W.F. 2007 How much potassium is in the Earth's core? New insights from partitioning experiments. Earth Planet. Sci. Lett. 256 (3), 567576.CrossRefGoogle Scholar
Cuk, M. & Stewart, S.T. 2012 Making the moon from a fast-spinning earth: a giant impact followed by resonant despinning. Science 338 (6110), 10471052.CrossRefGoogle ScholarPubMed
Dalziel, S.B., Linden, P.F. & Youngs, D.L. 1999 Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech. 399, 148.CrossRefGoogle Scholar
Deguen, R., Landeau, M. & Olson, P. 2014 Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274287.CrossRefGoogle Scholar
Deguen, R., Olson, P. & Cardin, P. 2011 Experiments on turbulent metal-silicate mixing in a magma ocean. Earth Planet. Sci. Lett. 310 (3), 303313.CrossRefGoogle Scholar
Dimonte, G. 1999 Nonlinear evolution of the Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Plasmas 6 (5), 20092015.CrossRefGoogle Scholar
Dimonte, G. 2000 Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation. Phys. Plasmas 7 (6), 22552269.CrossRefGoogle Scholar
Dimonte, G. & Schneider, M. 2000 Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids 12 (2), 304321.CrossRefGoogle Scholar
Emmons, H.W., Chang, C.T. & Watson, B.C. 1960 Taylor instability of finite surface waves. J. Fluid Mech. 7 (2), 177193.CrossRefGoogle Scholar
Engel, O.G. 1961 Collisions of liquid drops with liquids. Tech. Rep. WADD-TR-60-475, Part I. National Bureau of Standards, Washington, DC, USA.CrossRefGoogle Scholar
Engel, O.G. 1962 Collisions of liquid drops with liquids. Part 2 – Crater depth in fluid impact. Tech. Rep. WADD-TR-60-475, Part II. National Bureau of Standards, Gaithersburg, MD, USA.CrossRefGoogle Scholar
Engel, O.G. 1966 Crater depth in fluid impacts. J. Appl. Phys. 37 (4), 17981808.CrossRefGoogle Scholar
Engel, O.G. 1967 Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts. J. Appl. Phys. 38 (10), 39353940.CrossRefGoogle Scholar
Fedorchenko, A.I. & Wang, A.-B. 2004 On some common features of drop impact on liquid surfaces. Phys. Fluids 16 (5), 13491365.CrossRefGoogle Scholar
Fischer, R.A., Nakajima, Y., Campbell, A.J., Frost, D.J., Harries, D., Langenhorst, F., Miyajima, N., Pollok, K. & Rubie, D.C. 2015 High pressure metal–silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim. Cosmochim. Acta 167, 177194.CrossRefGoogle Scholar
Gielen, M.V., Sleutel, P., Benschop, J., Riepen, M., Voronina, V., Visser, C.W., Lohse, D., Snoeijer, J.H., Versluis, M. & Gelderblom, H. 2017 Oblique drop impact onto a deep liquid pool. Phys. Rev. Fluids 2 (8), 083602.CrossRefGoogle Scholar
Haynes, W.M. 2016 CRC Handbook of Chemistry and Physics. CRC.CrossRefGoogle Scholar
Holsapple, K.A. 1993 The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21 (1), 333373.CrossRefGoogle Scholar
Ichikawa, H., Labrosse, S. & Kurita, K. 2010 Direct numerical simulation of an iron rain in the magma ocean. J. Geophys. Res. 115 (B01404), 112.Google Scholar
Jacobs, J.W. & Sheeley, J.M. 1996 Experimental study of incompressible Richtmyer–Meshkov instability. Phys. Fluids 8 (2), 405415.CrossRefGoogle Scholar
Jain, U., Jalaal, M., Lohse, D. & van der Meer, D. 2019 Deep pool water-impacts of viscous oil droplets. Soft Matt. 15 (23), 46294638.CrossRefGoogle ScholarPubMed
Jalaal, M., Kemper, D. & Lohse, D. 2019 Viscoplastic water entry. J. Fluid Mech. 864, 596613.CrossRefGoogle Scholar
Jeans, J.H. 1923 The propagation of earthquake waves. Proc. R. Soc. Lond. A 102 (718), 554574.Google Scholar
Karato, S.-I. & Murthy, V.R. 1997 Core formation and chemical equilibrium in the Earth—I. Physical considerations. Phys. Earth Planet. Inter. 100 (1), 6179.CrossRefGoogle Scholar
Keller, J.B. & Kolodner, I. 1954 Instability of liquid surfaces and the formation of drops. J. Appl. Phys. 25 (7), 918921.CrossRefGoogle Scholar
Kendall, J.D. & Melosh, H.J. 2016 Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 2433.CrossRefGoogle Scholar
Kleine, T., Münker, C., Mezger, K. & Palme, H. 2002 Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418 (6901), 952.CrossRefGoogle ScholarPubMed
Krechetnikov, R. & Homsy, G.M. 2009 Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331 (2), 555559.CrossRefGoogle ScholarPubMed
Labrosse, S., Hernlund, J.W. & Coltice, N. 2007 A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450 (7171), 866.CrossRefGoogle ScholarPubMed
Landeau, M., Deguen, R. & Olson, P. 2014 Experiments on the fragmentation of a buoyant liquid volume in another liquid. J. Fluid Mech. 749, 478518.CrossRefGoogle Scholar
Landeau, M., Deguen, R., Phillips, D., Neufeld, J.A., Lherm, V. & Dalziel, S.B. 2021 Metal-silicate mixing by large Earth-forming impacts. Earth Planet. Sci. Lett. 564, 116888.CrossRefGoogle Scholar
Leng, L.J. 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.CrossRefGoogle Scholar
Lherm, V. & Deguen, R. 2018 Small-scale metal/silicate equilibration during core formation: the influence of stretching enhanced diffusion on mixing. J. Geophys. Res.: Solid Earth 123 (12), 496516.CrossRefGoogle Scholar
Lhuissier, H., Sun, C., Prosperetti, A. & Lohse, D. 2013 Drop fragmentation at impact onto a bath of an immiscible liquid. Phys. Rev. Lett. 110 (26), 264503.CrossRefGoogle ScholarPubMed
Li, J. & Agee, C.B. 1996 Geochemistry of Mantle-Core differentiation at high pressure. Nature 381 (686), 689.CrossRefGoogle Scholar
Lin, H., Storey, B.D. & Szeri, A.J. 2002 Rayleigh–Taylor instability of violently collapsing bubbles. Phys. Fluids 14 (8), 29252928.CrossRefGoogle Scholar
Linden, P.F., Redondo, J.M. & Youngs, D.L. 1994 Molecular mixing in Rayleigh–Taylor instability. J. Fluid Mech. 265, 97124.CrossRefGoogle Scholar
Lindl, J. 1998 Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive. American Institute of Physics.Google Scholar
Lombardini, M., Pullin, D.I. & Meiron, D.I. 2014 Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. J. Fluid Mech. 748, 85112.CrossRefGoogle Scholar
Macklin, W.C. & Metaxas, G.J. 1976 Splashing of drops on liquid layers. J. Appl. Phys. 47 (9), 39633970.CrossRefGoogle Scholar
Melosh, H.J. 1989 Impact Cratering: A Geologic Process. Oxford University Press.Google Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4 (5), 101104.CrossRefGoogle Scholar
Mikaelian, K.O. 1990 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified spherical shells. Phys. Rev. A 42 (6), 34003420.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2016 Viscous Rayleigh–Taylor instability in spherical geometry. Phys. Rev. E 93 (2), 023104.CrossRefGoogle ScholarPubMed
Monteux, J., Jellinek, A.M. & Johnson, C.L. 2011 Why might planets and moons have early dynamos? Earth Planet. Sci. Lett. 310 (3), 349359.CrossRefGoogle Scholar
Morard, G. & Katsura, T. 2010 Pressure–temperature cartography of Fe–S–Si immiscible system. Geochim. Cosmochim. Acta 74 (12), 36593667.CrossRefGoogle Scholar
Morton, D., Rudman, M. & Jong-Leng, L. 2000 An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12 (4), 747763.CrossRefGoogle Scholar
Nakajima, M., Golabek, G.J., Wünnemann, K., Rubie, D.C., Burger, C., Melosh, H.J., Jacobson, S.A., Manske, L. & Hull, S.D. 2021 Scaling laws for the geometry of an impact-induced magma ocean. Earth Planet. Sci. Lett. 568, 116983.CrossRefGoogle Scholar
Okawa, T., Shiraishi, T. & Mori, T. 2006 Production of secondary drops during the single water drop impact onto a plane water surface. Exp. Fluids 41 (6), 965.CrossRefGoogle Scholar
Olevson, K.L.R. 1969 Energy balances for transient water craters. US Geol. Surv. Prof. Pap. D (650), 189194.Google Scholar
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. & Shvarts, D. 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8 (6), 28832889.CrossRefGoogle Scholar
Plesset, M.S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25 (1), 9698.CrossRefGoogle Scholar
Prosperetti, A. 1977 Viscous effects on perturbed spherical flows. Q. Appl. Maths 34 (4), 339352.CrossRefGoogle Scholar
Prosperetti, A & Oguz, H.N. 1993 The impact of drops on liquid surfaces and the underwater noise of rain. Annu. Rev. Fluid Mech. 25 (1), 577602.CrossRefGoogle Scholar
Ray, B., Biswas, G. & Sharma, A. 2015 Regimes during liquid drop impact on a liquid pool. J. Fluid Mech. 768, 492523.CrossRefGoogle Scholar
Rayleigh, Lord 1899 Scientific papers (Vol. 2: 1881–1887). Cambridge University Press.Google Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 6193.CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13 (2), 297319.CrossRefGoogle Scholar
Righter, K. 2011 Prediction of metal–silicate partition coefficients for siderophile elements: an update and assessment of PT conditions for metal–silicate equilibrium during accretion of the Earth. Earth Planet. Sci. Lett. 304 (1), 158167.CrossRefGoogle Scholar
Rubie, D.C., Frost, D.J., Mann, U., Asahara, Y., Nimmo, F., Tsuno, K., Kegler, P., Holzheid, A. & Palme, H. 2011 Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301 (1), 3142.CrossRefGoogle Scholar
Rubie, D.C., Melosh, H.J., Reid, J.E., Liebske, C. & Righter, K. 2003 Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205 (3), 239255.CrossRefGoogle Scholar
Rubie, D.C., Nimmo, F. & Melosh, H.J. 2015 9.03 – Formation of the Earth's Core. In Treatise on Geophysics (Second Edition) (ed. G. Schubert), pp. 43–79. Elsevier.CrossRefGoogle Scholar
Rudge, J.F., Kleine, T. & Bourdon, B. 2010 Broad bounds on Earth's accretion and core formation constrained by geochemical models. Nat. Geosci. 3 (6), 439.CrossRefGoogle Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S. & Masarik, J. 2006 Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett. 241 (3), 530542.CrossRefGoogle Scholar
Schmidt, W. 2006 From tea kettles to exploding stars. Nat. Phys. 2 (8), 505506.CrossRefGoogle Scholar
Shoemaker, E.M. 1961 Interpretation of lunar craters. In Physics and Astronomy of the Moon (ed. Z. Kopal), pp. 283–359. Academic.CrossRefGoogle Scholar
Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F.J. 2012 Metal–silicate partitioning of Ni and Co in a deep magma ocean. Earth Planet. Sci. Lett. 321–322, 189197.CrossRefGoogle Scholar
Siebert, J., Corgne, A. & Ryerson, F.J. 2011 Systematics of metal–silicate partitioning for many siderophile elements applied to Earth's core formation. Geochim. Cosmochim. Acta 75 (6), 14511489.CrossRefGoogle Scholar
Solomatov, V. 2015 9.04 – Magma Oceans and Primordial Mantle Differentiation. In Treatise on Geophysics (Second Edition) (ed. G. Schubert), pp. 81–104. Elsevier.CrossRefGoogle Scholar
Stevenson, D.J. 1990 Fluid dynamics of core formation. In Origin of the Earth (ed. H.E. Newsom & J.H. Jones), pp. 231–249. Oxford University Press.Google Scholar
Sun, Y., Zhou, H., Yin, K., Zhao, M., Xu, S. & Lu, X. 2018 Transport properties of Fe2SiO4 melt at high pressure from classical molecular dynamics: implications for the lifetime of the magma ocean. J. Geophys. Res.: Solid Earth 123 (5), 36673679.CrossRefGoogle Scholar
Takita, H. & Sumita, I. 2013 Low-velocity impact cratering experiments in a wet sand target. Phys. Rev. E 88 (2), 022203.CrossRefGoogle Scholar
Taniguchi, H. 1988 Surface tension of melts in the system CaMgSi2O6-CaAl2Si2O8 and its structural significance. Contrib. Mineral. Petrol. 100 (4), 484489.CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192196.Google Scholar
Thomas, V.A. & Kares, R.J. 2012 Drive asymmetry and the origin of turbulence in an ICF implosion. Phys. Rev. Lett. 109 (7), 075004.CrossRefGoogle Scholar
Tonks, W.B. & Melosh, H.J. 1993 Magma ocean formation due to giant impacts. J. Geophys. Res.: Planets 98 (E3), 53195333.CrossRefGoogle Scholar
Tryggvason, G. 1988 Numerical simulations of the Rayleigh–Taylor instability. J. Comput. Phys. 75 (2), 253282.CrossRefGoogle Scholar
Villermaux, E. 2020 Fragmentation versus cohesion. J. Fluid Mech. 898, P1.CrossRefGoogle Scholar
Wacheul, J.-B. & Le Bars, M. 2018 Experiments on fragmentation and thermo-chemical exchanges during planetary core formation. Phys. Earth Planet. Inter. 276, 134144.CrossRefGoogle Scholar
Wacheul, J.-B., Le Bars, M., Monteux, J. & Aurnou, J.M. 2014 Laboratory experiments on the breakup of liquid metal diapirs. Earth Planet. Sci. Lett. 403, 236245.CrossRefGoogle Scholar
Walsh, A.M., Holloway, K.E., Habdas, P. & de Bruyn, J.R. 2003 Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91 (10), 104301.CrossRefGoogle ScholarPubMed
Wille, G., Millot, F. & Rifflet, J.C. 2002 Thermophysical properties of containerless liquid iron up to 2500 K. Intl J. Thermophys. 23 (5), 11971206.CrossRefGoogle Scholar
Williams, J.-P. & Nimmo, F. 2004 Thermal evolution of the martian core: implications for an early dynamo. Geology 32 (2), 97100.CrossRefGoogle Scholar
Wood, B.J., Walter, M.J. & Wade, J. 2006 Accretion of the Earth and segregation of its core. Nature 441 (7095), 825.CrossRefGoogle ScholarPubMed
Worthington, A.M. 1895 The Splash of a Drop. S.P.C.K.Google Scholar
Youngs, D.L. & Williams, R.J.R. 2008 Turbulent mixing in spherical implosions. Intl J. Numer. Meth. Fluids 56 (8), 15971603.CrossRefGoogle Scholar
Zhang, L.V., Brunet, P., Eggers, J. & Deegan, R.D. 2010 Wavelength selection in the crown splash. Phys. Fluids 22 (12), 122105.CrossRefGoogle Scholar
Zhou, Y. 2017 Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.Google Scholar

Lherm et al. supplementary movie 1

Liquid drop impact onto a deep liquid pool without density contrast, using a backlight illumination (ρ1/ρ2=1.0 and Fr=483).

Download Lherm et al. supplementary movie 1(Video)
Video 38.4 MB

Lherm et al. supplementary movie 2

Liquid drop impact onto a deep liquid pool without density contrast, using laser-induced fluorescence illumination (ρ1/ρ2=1.0 and Fr=481).

Download Lherm et al. supplementary movie 2(Video)
Video 36 MB

Lherm et al. supplementary movie 3

Liquid drop impact onto a deep liquid pool with density contrast, using a backlight illumination (ρ1/ρ2=1.8 and Fr=542).

Download Lherm et al. supplementary movie 3(Video)
Video 48.5 MB

Lherm et al. supplementary movie 4

Liquid drop impact onto a deep liquid pool with density contrast, using laser-induced fluorescence illumination (ρ1/ρ2=1.8 and Fr=572).

Download Lherm et al. supplementary movie 4(Video)
Video 37.2 MB