Hostname: page-component-7857688df4-74lm6 Total loading time: 0 Render date: 2025-11-17T19:47:18.363Z Has data issue: false hasContentIssue false

Quasi-self-similarity of the horizontal magnetic Rayleigh–Taylor instability

Published online by Cambridge University Press:  17 November 2025

Antoine Briard*
Affiliation:
CEA, DAM, DIF , Arpajon 91297, France
Benoit-Joseph Gréa
Affiliation:
CEA, DAM, DIF , Arpajon 91297, France Laboratoire de la Matière en Conditions Extrêmes, CEA, Université Paris-Saclay, Bruyères-le-Châtel 91680, France
Olivier Soulard
Affiliation:
CEA, DAM, DIF , Arpajon 91297, France Laboratoire de la Matière en Conditions Extrêmes, CEA, Université Paris-Saclay, Bruyères-le-Châtel 91680, France
*
Corresponding author: Antoine Briard, antoine.briard@cea.fr

Abstract

An imposed constant magnetic field parallel to the interface in the Rayleigh–Taylor framework strongly modifies the dynamics of the flow. The growth rate of the turbulent mixing layer is almost doubled compared with the purely hydrodynamic case, mainly due to a strong reduction of small-scale mixing. Indeed, magnetic tension inhibits the small-scale perturbations from developing, which in turn creates a strong anisotropy with structures elongated in the field direction. Two theoretical predictions for the asymptotic state of the magnetic Rayleigh–Taylor instability (MRTI) are put forward. First, considering the large-scale dynamics, an upper bound for the mixing layer growth rate is obtained. Second, the phenomenology is embedded in a buoyancy–drag equation from which an analytical relation between the growth rate, mixing, anisotropy and induced magnetic fields is derived. Both predictions are successfully assessed with high resolution direct numerical simulations of the Boussinesq–Navier–Stokes equations under the magnetohydrodynamics approximation. These predictions characterize the quasi-self-similar state of the MRTI driven by strong magnetic fields.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andrews, M.J. & Spalding, D.B. 1990 A simple experiment to investigate two-dimensional mixing by Rayleigh–Taylor instability. Phys. Fluids A 2, 922.10.1063/1.857652CrossRefGoogle Scholar
Baldwin, K.A., Scase, M.M. & Hill, R.J.A. 2015 The inhibition of the Rayleigh–Taylor instability by rotation. Nat. Scientific Rep. 5, 11706.10.1038/srep11706CrossRefGoogle ScholarPubMed
Biskamp, D. 2003 Magnetohydrodynamic Turbulence. Cambridge University Press.10.1017/CBO9780511535222CrossRefGoogle Scholar
Boffetta, G., Borgnino, M. & Musacchio, S. 2020 Scaling of Rayleigh-Taylor mixing in porous media. Phys. Rev. Fluids 99, 062501(R).10.1103/PhysRevFluids.5.062501CrossRefGoogle Scholar
Boffetta, G., Magnani, M. & Musacchio, S. 2019 Suppression of Rayleigh–Taylor turbulence by time-periodic acceleration. Phys. Rev. E 99, 033110.10.1103/PhysRevE.99.033110CrossRefGoogle ScholarPubMed
Boffetta, G., Mazzino, A. & Musacchio, S. 2016 Rotating Rayleigh–Taylor turbulence. Phys. Rev. Fluids 1, 054405.10.1103/PhysRevFluids.1.054405CrossRefGoogle Scholar
Briard, A., Gréa, B.-J. & Nguyen, F. 2022 Growth rate of the turbulent magnetic Rayleigh–Taylor instability. Phys. Rev. E 106, 065201.10.1103/PhysRevE.106.065201CrossRefGoogle ScholarPubMed
Briard, A., Gréa, B.-J. & Nguyen, F. 2024 a Sustained oscillating regime in the two-dimensional magnetic Rayleigh–Taylor instability. Phys. Fluids 36, 084122.10.1063/5.0223414CrossRefGoogle Scholar
Briard, A., Gréa, B.-J. & Nguyen, F. 2024 b Turbulent mixing in the vertical magnetic Rayleigh–Taylor instability. J. Fluid Mech. 979, A8.10.1017/jfm.2023.1053CrossRefGoogle Scholar
Briard, A., Gréa, B.-J., Oteski, L., Soulard, O., Griffond, J., Thévenin, S. & Danaila, L. 2025 Poisson solvers for strongly stratified turbulent flows. Computers Fluids 300, 106741.10.1016/j.compfluid.2025.106741CrossRefGoogle Scholar
Briard, A., Iyer, M. & Gomez, T. 2017 Anisotropic spectral modeling for unstably stratified homogeneous turbulence. Phys. Rev. Fluids 2, 044604.10.1103/PhysRevFluids.2.044604CrossRefGoogle Scholar
Burlot, A., Gréa, B.-J., Godeferd, F.S., Cambon, C. & Griffond, J. 2015 Spectral modelling of high Reynolds number unstably stratified homogeneous turbulence. J. Fluid Mech. 765, 1744.10.1017/jfm.2014.726CrossRefGoogle Scholar
Cabot, W.H. & Cook, A.W. 2006 Reynolds number effects on Rayleigh–Taylor instability with possible implications for type-ia supernovae. Nat. Phys. 2, 562568.10.1038/nphys361CrossRefGoogle Scholar
Carlyle, J. & Hillier, A. 2017 The non-linear growth of the magnetic Rayleigh–Taylor instability. Astron. Astrophys. 605, A101.10.1051/0004-6361/201730802CrossRefGoogle Scholar
Chandrasekhar, S. 1961 X: the stability of superimposed fluids: the Rayleigh–Taylor instability. In Hydrodynamic and Hydromagnetic Stability, pp. 428477. Oxford University Press.Google Scholar
Cook, A.W., Cabot, W. & Miller, P.L. 2004 The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511, 333362.10.1017/S0022112004009681CrossRefGoogle Scholar
Davies, R.M. & Taylor, G.I. 1950 The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. Lond. 200, 375.Google Scholar
Davies Wykes, M.S. & Dalziel, S.B. 2014 Efficient mixing in stratified flows: experimental study of Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech. 756, 10271057.10.1017/jfm.2014.308CrossRefGoogle Scholar
Davies Wykes, M.S., Hughes, G.O. & Dalziel, S.B. 2015 On the meaning of mixing efficiency for buoyancy-driven mixing in stratified turbulent flows. J. Fluid Mech. 781, 261275.10.1017/jfm.2015.462CrossRefGoogle Scholar
Dimonte, G. 2000 Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation. Phys. Plasma 7, 2255.10.1063/1.874060CrossRefGoogle Scholar
Dimonte, G. 2004 A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the alpha-group collaboration. Phys. Fluids 16, 1668.10.1063/1.1688328CrossRefGoogle Scholar
Fryxell, B., Kuranz, C.C., Drake, R.P., Grosskopf, M.J., Budde, A., Plewa, T., Hearn, N., Hansen, J.F., Miles, A.R. & Knauer, J. 2010 The possible effects of magnetic fields on laser experiments of Rayleigh–Taylor instabilities. High Energ. Dens. Phys. 6, 162165.10.1016/j.hedp.2010.01.008CrossRefGoogle Scholar
Gréa, B.-J. 2013 The rapid acceleration model and the growth rate of a turbulent mixing zone induced by Rayleigh–Taylor instability. Phys. Fluids 25, 015118.10.1063/1.4775379CrossRefGoogle Scholar
Gréa, B.-J. & Briard, A. 2023 Inferring the magnetic field from the Rayleigh–Taylor instability. Astrophys. J. 958 (2), 164.10.3847/1538-4357/ad05c3CrossRefGoogle Scholar
Gréa, B.-J., Burlot, A., Godeferd, F.S., Griffond, J., Soulard, O. & Cambon, C. 2016 Dynamics and structure of unstably stratified homogeneous turbulence. J. Turbul. 17 (7), 651663.10.1080/14685248.2016.1169281CrossRefGoogle Scholar
Griffond, J., Gréa, B.-J. & Soulard, O. 2014 Unstably stratified homogeneous turbulencen as a tool for turbulent mixing modeling. J. Fluids Engng 136, 091201.10.1115/1.4025675CrossRefGoogle Scholar
Griffond, J., Gréa, B.-J. & Soulard, O. 2015 Numerical investigation of self-similar unstably stratified homogeneous turbulence. J. Turbul. 16, 167183.10.1080/14685248.2014.979351CrossRefGoogle Scholar
Gupta, M.R., Mandal, L., Roy, S. & Khan, M. 2010 Effect of magnetic field on temporal development of Rayleigh–Taylor instability induced interfacial nonlinear structure. Phys. Plasma 17, 012306.10.1063/1.3293120CrossRefGoogle Scholar
Hillier, A. 2018 The magnetic Rayleigh–Taylor instability in solar prominences. Rev. Mod. Plasma Phys. 2, 147.10.1007/s41614-017-0013-2CrossRefGoogle Scholar
Hillier, A. 2020 Ideal MHD Instabilities, with a Focus On the Rayleigh–Taylor and Kelvin–Helmholtz Instabilities.Springer International Publishing, pp. 136.Google Scholar
Hunt, J.C.R. & Carruthers, D.J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.10.1017/S0022112090002075CrossRefGoogle Scholar
Isobe, H., Miyagoshi, T., Shibata, K. & Yokoyama, T. 2005 Filamentary structure on the Sun from the magnetic Rayleigh–Taylor instability. Nature 434, 478481.10.1038/nature03399CrossRefGoogle ScholarPubMed
Jenkins, J.M. & Keppens, R. 2022 Resolving the solar prominence/filament paradox using the magnetic Rayleigh–Taylor instability. Nat. Astron. 6, 942950.10.1038/s41550-022-01705-zCrossRefGoogle Scholar
Jun, B.-I. & Norman, M.L. 1996 On the origin of radial magnetic fields in young supernova remnants. Astrophys. J. 472, 245256.10.1086/178059CrossRefGoogle Scholar
Jun, B.-I., Norman, M.L. & Stone, J.M. 1995 The non-linear growth of the magnetic Rayleigh–Taylor instability. Astrophys. J. 453, 332349.10.1086/176393CrossRefGoogle Scholar
Kalluri, M.T. & Hillier, A. 2025 Self-similarity and growth of non-linear magnetic Rayleigh–Taylor instability – role of the magnetic field strength. Physica D: Nonlinear Phenom. 483, 134924.10.1016/j.physd.2025.134924CrossRefGoogle Scholar
Keppens, R., Xia, C. & Porth, O. 2015 Solar prominences: ‘double’, doublek boil and bubble. Astrophys. J. Lett. 806, L13.10.1088/2041-8205/806/1/L13CrossRefGoogle Scholar
Leroy, J.L. 1989 Observation of Prominence Magnetic Fields. Springer Netherlands, pp. 77113.Google Scholar
Ley, K., Soulard, O., Griffond, J., Briard, A. & Simoëns, S. 2024 Reactive Rayleigh–Taylor turbulence: influence of mixing on the growth and displacement of the mixing zone. Phys. Rev. Fluids 9, 074609.10.1103/PhysRevFluids.9.074609CrossRefGoogle Scholar
Matsakos, T., Uribe, A. & Königl, A. 2015 Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. Astron. Astrophys. 578, A6.10.1051/0004-6361/201425593CrossRefGoogle Scholar
Morgan, B.E. & Black, W.J. 2020 Parametric investigation of the transition to turbulence in Rayleigh–Taylor mixing. Physica D 402, 132223.10.1016/j.physd.2019.132223CrossRefGoogle Scholar
Pekurovsky, D. 2012 P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions. J. Scientific Computing 34 (4), C192C209.10.1137/11082748XCrossRefGoogle Scholar
Peltier, W.R. & Caufield, C.P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35, 135167.10.1146/annurev.fluid.35.101101.161144CrossRefGoogle Scholar
Popescu Braileanu, B., Lukin, V.S. & Khomenko, E. 2023 Magnetic field amplification and structure formation by the Rayleigh–Taylor instability. Astron. Astrophys. 670, A31.10.1051/0004-6361/202142996CrossRefGoogle Scholar
Porth, O., Komissarov, S. & Keppens, R. 2014 Rayleigh–Taylor instability in magnetohydrodynamic simulations of the Crab nebula. Mon. Not. R. Astron. Soc. 443, 547558.10.1093/mnras/stu1082CrossRefGoogle Scholar
Poujade, O. & Peybernes, M. 2010 Growth rate of Rayleigh–Taylor turbulent mixing layers with the foliation approach. Phys. Rev. E 81, 016316.10.1103/PhysRevE.81.016316CrossRefGoogle ScholarPubMed
Ramshaw, J.D. 1998 Simple model for linear and nonlinear mixing at unstable fluid interfaces in spherical geometry. Phys. Rev. E 60, 1775.10.1103/PhysRevE.60.1775CrossRefGoogle Scholar
Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170.Google Scholar
Remington, 2019 Rayleigh–Taylor instabilities in high-energy density settings on the National Ignition Facility. PNAS 116 (37), 1823318238.10.1073/pnas.1717236115CrossRefGoogle ScholarPubMed
Ruderman, M.S. 2017 Compressibility effect on the Rayleigh–Taylor instability with sheared magnetic fields. Sol. Phys. 292, 47.10.1007/s11207-017-1073-8CrossRefGoogle Scholar
Ruderman, M.S., Terradas, J. & Ballester, J.L. 2014 Rayleigh–Taylor instabilities with sheared magnetic fields. Astrophys. J. 785, 110.10.1088/0004-637X/785/2/110CrossRefGoogle Scholar
Ryutova, M., Berger, T., Frank, Z., Tarbell, T. & Title, A. 2010 Observation of plasma instabilities in quiescent prominences. Solar Phys. 267, 7594.10.1007/s11207-010-9638-9CrossRefGoogle Scholar
Scase, M.M., Baldwin, K.A. & Hill, R.J.A. 2017 Rotating Rayleigh–Taylor instability. Phys. Rev. Fluids 2, 024801.10.1103/PhysRevFluids.2.024801CrossRefGoogle Scholar
Sharp, D.H. 1984 An overview of Rayleigh–Taylor instability. Physica 12D, 318.Google Scholar
Sinars, D.B. 2010 Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid al tubes driven by the 20-MA, 100-ns Z facility. Phys. Rev. Lett. 105, 185001.10.1103/PhysRevLett.105.185001CrossRefGoogle ScholarPubMed
Sinars, D.B. 2020 Review of pulsed power-driven high energy density physics research on Z at Sandia. Phys. Plasmas 27, 070501.10.1063/5.0007476CrossRefGoogle Scholar
Soulard, O., Griffond, J. & Gréa, B.-J. 2014 Large-scale analysis of self-similar unstably stratified homogeneous turbulence. Phys. Fluids 26, 015110.10.1063/1.4862445CrossRefGoogle Scholar
Soulard, O., Griffond, J. & Gréa, B.-J. 2015 Large-scale analysis of unconfined self-similar Rayleigh–Taylor turbulence. Phys. Fluids 27, 095103.10.1063/1.4930003CrossRefGoogle Scholar
Soulard, O., Griffond, J. & Gréa, B.-J. 2016 Influence of the mixing parameter on the second-order moments of velocity and concentration in Rayleigh–Taylor turbulence. Phys. Fluids 28, 065107.10.1063/1.4954213CrossRefGoogle Scholar
Stone, J.M. & Gardiner, T. 2007 a The magnetic Rayleigh–Taylor instability in three dimensions. Astrophys. J. 671, 17261735.10.1086/523099CrossRefGoogle Scholar
Stone, J.M. & Gardiner, T. 2007 b Nonlinear evolution of the magnetohydrodynamic Rayleigh–Taylor instability. Phys. Fluids 19, 094104.10.1063/1.2767666CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. 192, 201.Google Scholar
Terradas, J., Oliver, R. & Ballester, J.L. 2012 The role of Rayleigh–Taylor instabilities in filament threads. Astron. Astrophys. 541, A102.10.1051/0004-6361/201219027CrossRefGoogle Scholar
Thévenin, S., Gréa, B.-J., Kluth, G. & Briard, A. 2025 a Database of direct numerical simulations of Rayleigh–Taylor turbulence at low density contrast: 0D volume-averaged quantities.Google Scholar
Thévenin, S., Gréa, B.-J., Kluth, G. & Nadiga, B. 2025 b Leveraging initial conditions memory for modelling Rayleigh–Taylor turbulence. J. Fluid Mech. 1009, A17.10.1017/jfm.2025.209CrossRefGoogle Scholar
Vickers, E., Ballai, I. & Erdélyi, R. 2020 Magnetic Rayleigh–Taylor instability at a contact discontinuity with an oblique magnetic field. Astron. Astrophys. 634, A96.10.1051/0004-6361/201936490CrossRefGoogle Scholar
Walsh, C.A., Chittenden, J.P., McGlinchey, K., Niasse, N.P.L. & Appelbe, B.D. 2017 Self-generated magnetic fields in the stagnation phase of indirect-drive implosions on the national ignition facility. Phys. Rev. Lett. 118, 155001.10.1103/PhysRevLett.118.155001CrossRefGoogle ScholarPubMed
Winters, K., Lombard, P.N., Riley, J.J. & D’Asaro, A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.10.1017/S002211209500125XCrossRefGoogle Scholar
Wolf, G.H. 1969 The dynamic stabilization of the rayleigh–Taylor instability and the corresponding dynamic equilibrium. Zeitschrift für Physik A Hadrons and Nuclei 227, 291300.10.1007/BF01397662CrossRefGoogle Scholar
Youngs, D.L. 1994 Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Laser Particle Beams 12, 725750.10.1017/S0263034600008557CrossRefGoogle Scholar
Zhou, Y. 2017 Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence and mixing i. Phys. Rep. 720-722, 1136.Google Scholar
Zhou, Y., Sadler, J.D. & Hurricane, A. 2025 Instabilities and mixing in inertial confinement fusion. Annu. Rev. Fluid Mech. 57, 197225.10.1146/annurev-fluid-022824-110008CrossRefGoogle Scholar
Supplementary material: File

Briard et al. supplementary movie 1

3D density field of simulation R2B00AG05 corresponding to Figure 3.
Download Briard et al. supplementary movie 1(File)
File 29.1 MB
Supplementary material: File

Briard et al. supplementary movie 2

3D density field of simulation R2B03AG05 corresponding to Figure 3.
Download Briard et al. supplementary movie 2(File)
File 21.4 MB