Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T22:30:46.191Z Has data issue: false hasContentIssue false

Quasi-cylindrical approximation to the swirling flow in an atomizer chamber

Published online by Cambridge University Press:  10 October 2014

F. J. Higuera*
Affiliation:
Escuela Técnica Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain
A. Pereña
Affiliation:
Escuela Técnica Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain
*
Email address for correspondence: fhiguera@aero.upm.es

Abstract

A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an annular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This analysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by irrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, G. N. 1944 The theory of swirl atomizers. In Industrial Aerodynamics, pp. 114121. BNT ZAGI (Central Aerodynamic Institute), Moscow.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Binnie, A. M. 1949 The passage of a perfect fluid through a critical cross-section or ‘throat’. Proc. R. Soc. Lond. A 197, 545555.Google Scholar
Binnie, A. M. & Harris, D. P. 1950 The application of boundary-layer theory to swirling liquid flow through a nozzle. Q. J. Mech. Appl. Maths 3, 89106.CrossRefGoogle Scholar
Binnie, A. M. & Hookings, G. A. 1948 Laboratory experiments on whirlpools. Proc. R. Soc. Lond. A 194, 398415.Google Scholar
Binnie, A. M., Hookings, G. A. & Kamel, M. Y. M. 1957 The flow of swirling water through a convergent–diverging nozzle. J. Fluid Mech. 3, 261274.Google Scholar
Bloor, M. I. G. & Ingham, D. B. 1977 Axially symmetric boundary layers on a finite disk. Phys. Fluids 20, 12281233.Google Scholar
Burggraf, O. R., Stewartson, K. & Belcher, R. 1971 Boundary layer induced by a potential vortex. Phys. Fluids 14, 18211833.CrossRefGoogle Scholar
Chinn, J. J. 2009 An appraisal of swirl atomizer inviscid flow analysis. Atomiz. Sprays 19, 263311.Google Scholar
Cooke, J. C. 1952 On Pohlhausen’s method with application to a swirl problem of Taylor. J. Aero. Sci. 19, 486490.Google Scholar
Cousin, J. & Nuglish, H. J.2001 Modeling of internal flow in high pressure pressure swurl injectors. SAE Paper 2001-01-0963.Google Scholar
Datta, A. & Som, S. K. 2000 Numerical prediction of air core diameter, coefficient of discharge and spray cone angle of a swirl spray pressure nozzle. Intl J. Heat Fluid Flow 21, 412419.Google Scholar
Dombrowski, N. & Hasson, D. 1969 The flow characteristics of swirl (centrifugal) spray pressure nozzles with low viscosity liquids. AIChE J. 15, 604611.CrossRefGoogle Scholar
Donjat, D., Estivalezes, J. L., Michau, M. & Lavergne, G.2003 Phenomenological study of the pressure swirl atomizer internal flow. In Proceedings of the 9th International Conference on Liquid Atomization and Spray Systems, Sorrento, Italy, pp. 12–19.Google Scholar
Dumouchel, C., Bloor, M. I. G., Dombrowski, N., Ingham, D. B. & Ledoux, M. 1992 Boundary-layer characteristics of a swirl atomizer. Atomiz. Sprays 2, 225237.CrossRefGoogle Scholar
Giffen, E. & Muraszew, A. 1953 The Atomization of Liquid Fuels. Chapman and Hall.Google Scholar
Halder, M. R., Dash, S. K. & Som, S. K. 2003 Influences of nozzle flow and nozzle geometry on the shape and size of an air core in a hollow cone swirl nozzle. Proc. Inst. Mech. Engrs 217, 207217.Google Scholar
Hansen, K. G., Madsen, J., Trinh, C. M., Ibsen, C. H., Solberg, T. & Hjertager, B. H.2002 A computational and experimental study of the internal flow in scaled pressure-swirl atomizer. In Proceedings of the 18th Annual Conference on Liquid Atomization and Spray Systems, Zaragoza, Spain, Paper 058.Google Scholar
Higuera, F. J. 1994 The hydraulic jump in a viscous laminar flow. J. Fluid Mech. 274, 6992.Google Scholar
Holtzclaw, D., Sakman, T., Jeng, S. M., Jog, M. A. & Benjamin, M. A.1997 Investigation of the flow in a simplex fuel nozzle. AIAA Paper 97-2970.CrossRefGoogle Scholar
Horvay, M. & Leuckel, W. 1986 Experimental and theoretical investigation of swirl nozzles for pressure-jet atomization. German Chem. Engng 9, 276283.Google Scholar
Jeng, S. M., Jog, M. A. & Benjamin, M. A. 1998 Computational and experimental study of liquid sheet emanating from simplex fuel nozzle. AIAA J. 36, 201207.Google Scholar
Kim, S., Khil, T., Kim, D. & Yoon, Y. 2009 Effect of geometric parameters on the liquid film thickness and air core formation in a swirl injector. Meas. Sci. Technol. 20, 111.Google Scholar
von Lavante, E., Maatje, U. & Albina, F. A.2002 Investigation of unsteady effects in pressure swirl atomizers. In Proceedings of the 18th Annual Conference on Liquid Atomization and Spray Systems, Zaragoza, Spain, Paper 081.Google Scholar
Lefebvre, A. H. 1989 Atomization and Sprays. CRC Press.Google Scholar
Maatje, U., von Lavante, E. & Albina, F. A.2002 Numerical simulation of unsteady effects in simplex nozzles. AIAA Paper 2002-3179.Google Scholar
Madsen, J., Hjertager, B. H. & Solberg, T.2002 Numerical simulation of internal flow in a large-scale pressure-swirl atomizer. In Proceedings of the 18th Annual Conference on Liquid Atomization and Spray Systems, Zaragoza, Spain, Paper 028.Google Scholar
Moon, S., Abo-Serie, E. & Bae, C. 2010 Liquid film thickness inside the high pressure swirl injectors: real scale measurements and evaluation of analytical equations. Exp. Therm. Fluid Sci. 34, 113121.Google Scholar
Nieuwkamp, W. C.1985 Flow analysis of a hollow cone nozzle with potential flow theory. In Proceedings of the 1st International Conference on Liquid Atomization and Spray Systems, London, UK, vol. IIIC/1, pp. 1–9.Google Scholar
Nouri-Borujerdi, A. & Kebriaee, A. 2012 Numerical simulation of laminar and turbulent two-phase flow in pressure-swirl atomizers. AIAA J. 50, 20912101.Google Scholar
Novikov, I. I. 1948 Atomization of liquids by centrifugal nozzles. J. Tech. Phys. 18, 345354.Google Scholar
Park, H. & Heister, S. D. 2006 Nonlinear simulation of free surfaces and atomization in pressure swirl atomizers. Phys. Fluids 18, 052103.Google Scholar
Rizk, N. K. & Lefebvre, A. H. 1985 Internal flow characteristics of simplex swirl atomizers. J. Propul. 1, 193199.Google Scholar
Sakman, A. T., Jog, M. A., Jeng, S. M. & Benjamin, M. A. 2000 Parametric study of simplex fuel nozzle internal flow and performance. AIAA J. 38, 12141218.Google Scholar
Steinthorsson, E. & Lee, D. M.2000 Numerical simulations of internal flow in a simplex atomizer. In Proceedings of the 8th International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, pp. 324–331.Google Scholar
Suyari, M. & Lefebvre, A. H. 1986 Film thickness measurements in a simplex swirl atomizer. J. Propul. 2, 528533.Google Scholar
Taylor, G. I.1948 The mechanics of swirl atomisers. In Proceedings of the 7th International Congress of Applied Mechanics, vol. 2, pp. 280–285.Google Scholar
Taylor, G. I. 1950 The boundary layer in the converging nozzle of a swirl atomizer. Q. J. Mech. Appl. Maths 3, 129139.Google Scholar
Wang, D., Ma, Z., Jeng, S. M. & Benjamin, M. A.1999 Experimental study on large-scale simplex nozzle. AIAA Paper A99-31198.Google Scholar
Wimmer, E. & Brenn, G. 2013 Viscous flow through the swirl chamber of a pressure-swirl atomizer. Intl J. Multiphase Flow 53, 100113.Google Scholar
Xue, J., Jog, M. A., Jeng, S. M., Steinthorsson, E. & Benjamin, M. A.2004 Effect of geometric parameters on simplex atomizer performance. In Proceedings of the 35th Joint Propulsion Conference and Exhibit, Los Angeles, CA.Google Scholar
Yule, A. J. & Chinn, J. J. 2000 The internal flow structure and exit conditions of pressure swirl atomizers. Atomiz. Sprays 10, 121146.Google Scholar
Yule, A. J. & Widger, I. R. 1996 Swirl atomizers operating at high water pressure. Intl J. Mech. Sci. 38, 981999.CrossRefGoogle Scholar