Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T12:46:19.107Z Has data issue: false hasContentIssue false

Quantifying solute spreading and mixing in reservoir rocks using 3-D PET imaging

Published online by Cambridge University Press:  10 May 2016

Ronny Pini*
Affiliation:
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
Nicholas T. Vandehey
Affiliation:
Department of Radiotracer Development and Imaging Technology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Jennifer Druhan
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA
James P. O’Neil
Affiliation:
Department of Radiotracer Development and Imaging Technology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Sally M. Benson
Affiliation:
Department of Energy Resources Engineering, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: r.pini@imperial.ac.uk

Abstract

We report results of an experimental investigation into the effects of small-scale (mm–cm) heterogeneities on solute spreading and mixing in a Berea sandstone core. Pulse-tracer tests have been carried out in the Péclet number regime $Pe=6{-}40$ and are supplemented by a unique combination of two imaging techniques. X-ray computed tomography (CT) is used to quantify subcore-scale heterogeneities in terms of permeability contrasts at a spatial resolution of approximately $10~\text{mm}^{3}$, while [11C] positron emission tomography (PET) is applied to image the spatial and temporal evolution of the full tracer plume non-invasively. To account for both advective spreading and local (Fickian) mixing as driving mechanisms for solute transport, a streamtube model is applied that is based on the one-dimensional advection–dispersion equation. We refer to our modelling approach as semideterministic, because the spatial arrangement of the streamtubes and the corresponding solute travel times are known from the measured rock’s permeability map, which required only small adjustments to match the measured tracer breakthrough curve. The model reproduces the three-dimensional PET measurements accurately by capturing the larger-scale tracer plume deformation as well as subcore-scale mixing, while confirming negligible transverse dispersion over the scale of the experiment. We suggest that the obtained longitudinal dispersivity ($0.10\pm 0.02$  cm) is rock rather than sample specific, because of the ability of the model to decouple subcore-scale permeability heterogeneity effects from those of local dispersion. As such, the approach presented here proves to be very valuable, if not necessary, in the context of reservoir core analyses, because rock samples can rarely be regarded as ‘uniformly heterogeneous’.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Geology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.

References

Baker, L. E. 1977 Effects of dispersion and dead-end pore volume in miscible flooding. SPE J. 17 (3), 219227.Google Scholar
Barry, D. A. & Sposito, G. 1989 Analytical solution of a convection-dispersion model with time-dependent transport coefficients. Water Resour. Res. 25 (12), 24072416.Google Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Dover.Google Scholar
Benson, D. A., Wheatcraft, S. W. & Meerschaert, M. M. 2000 Application of a fractional advection-dispersion equation. Water Resour. Res. 36 (12), 14031412.CrossRefGoogle Scholar
Berkowitz, B., Cortis, A., Dentz, M. & Scher, H. 2006 Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003.Google Scholar
Berkowitz, B., Scher, H. & Silliman, S. E. 2000 Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36 (1), 149158.Google Scholar
Bijeljic, B. & Blunt, M. A. 2006 Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. 42, W01202.Google Scholar
Bijeljic, B. & Blunt, M. A. 2007 Pore-scale modeling of transverse dispersion in porous media. Water Resour. Res. 43, W12S11.Google Scholar
Bijeljic, B., Mostaghimi, P. & Blunt, M. J. 2011 Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107, 204502.Google Scholar
Boutchko, R., Rayz, V. L., Vandehey, N. T., O’Neil, J. P., Budinger, T. F., Nico, P. S., Druhan, J. L., Saloner, D. A., Gullberg, G. T. & Moses, W. W. 2012 Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics. J. Appl. Geophys. 76, 7481.Google Scholar
Bretz, R. E. & Orr, F. M. Jr 1987 Interpretation of miscible displacements in laboratory cores. SPE Res. Engng 2 (4), 492500.Google Scholar
Brigham, W. E., Reed, P. W. & Dew, J. N. 1961 Experiments on mixing during miscible displacement in porous media. SPE J. 1 (1), 18.Google Scholar
Brooks, R. H. & Corey, A. T. 1964 Hydraulic properties of porous media. Hydrology Paper No. 3, Colorado State University 127.Google Scholar
Charlaix, E. & Gayvallet, H. 1991 Hydrodynamic dispersion in networks of capillaries of random permeability. Europhys. Lett. 16 (3), 259264.Google Scholar
Cirpka, O. A. & Kitanidis, P. K. 2000 An advective–dispersive stream tube approach for the transfer of conservative-tracer data to reactive transport. Water Resour. Res. 36 (5), 12091220.Google Scholar
Coats, K. H. & Smith, B. D. 1964 Dead-end pore volume and dispersion in porous media. SPE J. 4, 7384.Google Scholar
Cortis, A. & Berkowitz, B. 2005 Computing ‘anomalous’ contaminant transport in porous media: the CTRW MATLAB toolbox. Ground Water 43 (6), 947950.CrossRefGoogle ScholarPubMed
Degueldre, C., Pleinert, H., Maguire, P., Lehman, E., Missimer, J., Hammer, J., Leenders, K., Böck, H. & Townsend, D. 1996 Porosity and pathway determination in crystalline rock by positron emission tomography and neutron radiography. Earth Planet. Sci. Lett. 140 (1), 213225.CrossRefGoogle Scholar
Dentz, M., Le Borgne, T., Englert, A. & Bijeljic, B. 2011 Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 117.Google Scholar
Donaldson, E. C., Kendall, R. F. & Manning, F. S. 1976 Dispersion and tortuosity in sandstones. In SPE Annual Fall Technical Conference and Exhibition, New Orleans, Louisiana, October 3–6.Google Scholar
Dullien, F. A. L. 1992 Porous Media. Fluid Transport and Pore Structure. Academic.Google Scholar
Fernø, M. A., Gauteplass, J., Hauge, L. P., Abell, G. E., Adamsen, T. C. H. & Graue, A. 2015 Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks. Water Resour. Res. 51, 78117819.CrossRefGoogle Scholar
Fogler, H. S. 1999 Elements of Chemical Reaction Engineering, 3rd edn. Prentice Hall.Google Scholar
Fourar, M. & Radilla, G. 2009 Non-fickian description of tracer transport through heterogeneous porous media. Trans. Porous Med. 80 (3), 561579.Google Scholar
Ginn, T. R. 2001 Stochastic-convective transport with nonlinear reactions and mixing: finite streamtube ensemble formulation for multicomponent reaction systems with intrastreamtube dispersion. J. Contam. Hydrol. 47, 128.Google Scholar
Ginn, T. R., Simmons, C. S. & Wood, B. D. 1995 Stochastic-convective transport with nonlinear reaction: biodegradation with microbial growth. Wat. Resour. Res. 31 (11), 26892700.Google Scholar
Gist, G. A., Thompson, A. H., Katz, A. J. & Higgins, R. L. 1990 Hydrodynamic dispersion and pore geometry in consolidated rock. Phys. Fluids 2 (9), 15331544.Google Scholar
Gladden, L. F. & Mitchell, J. 2011 Measuring adsorption, diffusion and flow in chemical engineering: applications of magnetic resonance to porous media. New J. Phys. 13, 035001.CrossRefGoogle Scholar
Goethals, P., Volkaert, A., Jacobs, P., Roels, S. & Carmeliet, J. 2009 Comparison of positron emission tomography and x-ray radiography for studies of physical processes in sandstone. Engng Geol. 103, 134138.Google Scholar
Grattoni, C. A., Rosen, M. R., Chertcoff, R. & Bidner, M. S. 1987 Use of radioisotopes to measure concentration distributions inside porous media during displacement tests. Chem. Engng Sci. 42 (8), 20552059.Google Scholar
Greiner, A., Schreiber, W., Brix, G. & Kinzelbach, W. 1997 Magnetic resonance imaging of paramagnetic tracers in porous media: quantification of flow and transport parameters. Water Resour. Res. 33 (6), 14611473.Google Scholar
Gründig, M., Richter, M., Seese, A. & Sabri, O. 2007 Tomographic radiotracer studies of the spatial distribution of heterogeneous geochemical transport processes. Appl. Geochem. 22 (11), 23342343.Google Scholar
Guillot, G., Kassab, G., Hulin, J. P. & Rigord, P. 1991 Monitoring of tracer dispersion in porous media by NMR imaging. J. Phys. D: Appl. Phys. 24 (5), 763773.Google Scholar
Haggerty, R., Mckenna, S. A. & Meigs, L. C. 2000 On the late time behavior of tracer test breakthrough curves. Water Resour. Res. 36 (12), 34673479.Google Scholar
Honari, M., Bijeljic, B., Johns, M. L. & May, E. F. 2015 Enhanced gas recovery with CO2 sequestration: the effect of medium heterogeneity on the dispersion of supercritical CO2/CH4 . Intl J. Greenh. Gas Control 39, 3950.Google Scholar
Hulin, J. P. & Plona, T. J. 1989 ‘Echo’ tracer dispersion in porous media. Phys. Fluids 1 (8), 13411347.Google Scholar
Illangasekare, T. H., Frippiat, C. C. & Fucik, R. 2011 Dispersion and mass transfer coefficients in groundwater of near-surface geologic formations. In Chemical Mass Transport in the Environment (ed. Thibodeaux, L. J. & Mackay, D.), chap. 15, 413–452. CRC Press.Google Scholar
Josendal, V. A., Sandiford, B. B. & Wilson, J. W. 1952 Improved multiphase flow studies employing radioactive tracers. Petrol. Trans. AIME 195, 6576.Google Scholar
Khalili, A, Basu, A. J. & Pietrzyk, U. 1998 Flow visualization in porous media via positron emission tomography. Phys. Fluids 10 (4), 10311033.Google Scholar
Kitanidis, P. K. 1994 The concept of the dilution index. Water Resour. Res. 30 (7), 20112026.Google Scholar
Krause, M., Krevor, S. & Benson, S. 2013 A procedure for the accurate determination of sub-core scale permeability distributions with error quantification. Trans. Porous Med. 98 (3), 565588.CrossRefGoogle Scholar
Krause, M., Perrin, J.-C. & Benson, S. 2011 Modeling permeability distributions in a sandstone core for history matching coreflood experiments. SPE J. 16 (4), 768777.Google Scholar
Le Borgne, T. L., Dentz, M., Bolster, D., Carrera, J., de Dreuzy, J.-R. & Davy, P. 2010 Non-Fickian mixing: temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv. Water Resour. 33, 14681475.Google Scholar
Levy, M. & Berkowitz, B. 2003 Masurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64, 203226.Google Scholar
Levin, C. S. & Hoffman, E. J. 1999 Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys. Med. Biol. 44 (3), 781799.Google Scholar
Maguire, R. P., Missimer, J. H., Emert, F., Townsend, D. W., Dollinger, H. & Leenders, K. L. 1997 Positron emission tomography of large rock samples using a multiring pet instrument. IEEE Trans. Nucl. Sci. 44 (1), 2630.CrossRefGoogle Scholar
Meyer, D. W. & Tchelepi, H. A. 2010 Particle-based transport model with Markovian velocity processes for tracer dispersion in highly heterogeneous porous media. Water Resour. Res. 46, W11552.Google Scholar
Motulsky, H. J. & Christopoulos, A. 2003 Fitting Models to Biological Data Using Linear and Nonlinear Regression. A Practical Guide to Curve Fitting. Oxford University Press.Google Scholar
Murphy, W. F., Roberts, J. N., Yale, D. & Winkler, K. W. 1984 Centimeter scale heterogeneities and microstratifaction in sedimentary rocks. Geophys. Res. Lett. 11 (8), 697700.Google Scholar
Ogilvie, S. R., Orribo, J. M. & Glover, P. W. J. 2001 The influence of deformation bands upon fluid flow using profile permeametry and positron emission tomography. Geophys. Res. Lett. 28 (1), 6164.Google Scholar
Perkins, T. K. & Johnston, O. C. 1963 A review of diffusion and dispersion in porous media. SPE J. 3 (1), 7084.Google Scholar
Perrin, J.-C. & Benson, S. 2010 An experimental study on the influence of sub-core scale heterogeneities on CO2 distribution in reservoir rocks. Trans. Porous Med. 82 (1), 93109.Google Scholar
Pini, R. & Benson, S. M. 2013a Characterization and scaling of mesoscale heterogeneities in sandstones. Geophys. Res. Lett. 40 (15), 39033908.Google Scholar
Ringrose, P. S., Sorbie, K. S., Corbett, P. W. M. & Jensen, J. L. 1993 Immiscible flow behaviour in laminated and cross-bedded sandstones. J. Petrol. Sci. Engng 9 (2), 103124.Google Scholar
Sahimi, M., Hughes, B. D., Scriven, L. E. & Davis, H. T. 1986 Dispersion in flow through porous media: I. One-phase flow. Chem. Engng Sci. 41 (8), 21032122.Google Scholar
Sarma, D. D. 2009 Geostatistics with Applications in Earth Sciences, 2nd edn. Capital Publishing Company.CrossRefGoogle Scholar
Scheidegger, A. E. 1974 The Physics of Flow Through Porous Media, 3rd edn. University of Toronto Press.Google Scholar
Simmons, C. S., Ginn, T. R. & Wood, B. D. 1995 Stochastic-convective transport with nonlinear reaction: mathematical framework. Water Resour. Res. 31 (11), 26752688.Google Scholar
Steefel, C. I. & Maher, K. 2009 Fluid-rock interaction: a reactive transport approach. Rev. Mineral. Geochem. 70 (1), 485532.Google Scholar
Thiele, M. R., Rao, S. E. & Blunt, M. J. 1996 Quantifying uncertainty in reservoir performance using streamtubes. Math. Geol. 28 (7), 843856.Google Scholar
Vandehey, N. T. & O’Neil, J. P. 2014 Capturing [11 C]CO2 for use in aqueous applications. Appl. Radiat. Isot. 90, 7478.Google Scholar
Walsh, M. P. & Withjack, E. M. 1994 On some remarkable observations of laboratory dispersion using computed tomography (CT). J. Can. Petrol. Technol. 33 (9), 3644.Google Scholar
Wellington, S. L. & Vinegar, H. J. 1987 X-ray computerized tomography. J. Petrol. Tech. 39, 885898.Google Scholar
Withjack, E. M. 1988 Computed tomography for rock-property determination and fluid-flow visualization. SPE Formation Eval. 3 (4), 696704.Google Scholar
Yabusaki, S. B., Steefel, C. I. & Wood, B. D. 1998 Multidimensional, multicomponent, subsurface reactive transport in nonunifom velocity fields: code verification using an advective reactive streamtube approach. J. Contam. Hydrol. 30, 299331.Google Scholar