Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T17:32:53.882Z Has data issue: false hasContentIssue false

Playing pool on the beta-plane: how weak initial perturbations predetermine the long-term evolution of coherent vortices

Published online by Cambridge University Press:  22 March 2021

Timour Radko*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA93943, USA
*
Email address for correspondence: tradko@nps.edu

Abstract

This study explores the long-term impact of a weak initial departure from circular symmetry in coherent equivalent-barotropic vortices on their dynamics and evolution. An algorithm is developed which makes it possible to construct models of vortices that initially propagate with prescribed velocity. These solutions are used as the initial conditions for a series of numerical simulations. Simulations indicate that seemingly minor perturbations of dipolar form can control the propagation of vortices for extended periods, during which they translate over distances greatly exceeding their size. The numerical results are contrasted with the linear model, which assumes that the non-axisymmetric component of circulation in the vortex interior is relatively weak. The linear solutions reflect the self-propagation tendencies of coherent vortices to a much lesser degree, which underscores the role of fundamentally nonlinear mechanisms at play. The remarkable ability of quasi-monopolar vortices to retain the memory of weak initial perturbations helps to rationalize the wide range of the observed propagation velocities of coherent long-lived vortices in the ocean.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adem, J. 1956 A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices. Tellus 8, 364372.CrossRefGoogle Scholar
Benilov, E.S. 1996 Beta-induced translation of strong isolated eddies. J. Phys. Oceanogr. 26, 22232229.2.0.CO;2>CrossRefGoogle Scholar
Berestov, A.L. 1979 Solitary Rossby waves. Izv. Acad. Sci. USSR Atmos. Ocean Phys. 15, 443447.Google Scholar
Byrne, D.A., Gordon, A.L. & Haxby, W.F. 1995 Agulhas eddies: a synoptic view using Geosat ERM data. J. Phys. Oceanogr. 25, 902917.2.0.CO;2>CrossRefGoogle Scholar
Carton, X.J. 2001 Hydrodynamical modeling of oceanic vortices. Surv. Geophys. 22, 179263.CrossRefGoogle Scholar
Chassignet, E.P., Olson, D.B. & Boudra, D.B. 1990 Motion and evolution of oceanic rings in a numerical model and in observations. J. Geophys. Res. Oceans 95, 2212122140.CrossRefGoogle Scholar
Chelton, D.B., Schlax, M.G. & Samelson, R.M. 2011 Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167216.CrossRefGoogle Scholar
Chen, G. & Han, G. 2019 Contrasting short-lived with long-lived mesoscale eddies in the global ocean. J. Geophys. Res. Oceans 124, 31493167.CrossRefGoogle Scholar
Cornillon, P., Weyer, R. & Flierl, G. 1989 Translational velocity of warm core rings relative to the slope water. J. Phys. Oceanogr. 19, 13171332.2.0.CO;2>CrossRefGoogle Scholar
Cushman-Roisin, B., Chassignet, E.P. & Tang, B. 1990 Westward motion of mesoscale eddies. J. Phys. Oceanogr. 20, 758768.2.0.CO;2>CrossRefGoogle Scholar
Dong, C., McWilliams, J.C., Liu, Y. & Chen, D. 2014 Global heat and salt transports by eddy movement. Nat. Commun. 5, 3294.CrossRefGoogle ScholarPubMed
Early, J.J., Samelson, R.M. & Chelton, D.B. 2011 The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr. 41, 15351555.CrossRefGoogle Scholar
Flierl, G.R., Larichev, V.D., McWilliams, J.C. & Reznik, G.M. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans 5, 141.CrossRefGoogle Scholar
Flór, J.B. & Eames, I. 2002 Dynamics of monopolar vortices on a topographic beta-plane. J. Fluid Mech. 456, 353376.CrossRefGoogle Scholar
Hesthaven, J.S., Lynov, J.P. & Nycander, J. 1993 Dynamics of non-stationary dipole vortices. Phys. Fluids A 5, 622629.CrossRefGoogle Scholar
Hughes, C.W. & Miller, P.I. 2017 Rapid water transport by long-lasting modon eddy pairs in the southern midlatitude oceans. Geophys. Res. Lett. 44, 1237512384.CrossRefGoogle Scholar
Killworth, P.D. 1986 On the propagation of isolated multilayer and continuously stratified eddies. J. Phys. Oceanogr. 16, 709716.2.0.CO;2>CrossRefGoogle Scholar
Kizner, Z., Berson, D. & Khvoles, R. 2003 Non-circular baroclinic beta-plane modons: constructing stationary solutions. J. Fluid Mech. 489, 199228.CrossRefGoogle Scholar
Kloosterziel, R.C., Carnevale, G.F. & Phillippe, D. 1993 Propagation of barotropic dipoles over topography in a rotating tank. Dyn. Atmos. Oceans 19, 65100.CrossRefGoogle Scholar
Kravtsov, S. & Reznik, G. 2019 Numerical solutions of the singular vortex problem. Phys. Fluids 31, 066602.CrossRefGoogle Scholar
Llewellyn Smith, S.G. 1997 The motion of a non-isolated vortex on the beta-plane. J. Fluid Mech. 346, 149179.CrossRefGoogle Scholar
Masumoto, Y. et al. 2012 Oceanic dispersion simulations of 137Cs released from the Fukushima Daiichi nuclear power plant. Elements 8, 207212.CrossRefGoogle Scholar
McGillicuddy, D.J. Jr. 2016 Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mater. Sci. 8, 125159.CrossRefGoogle ScholarPubMed
McWilliams, J.C. & Flierl, G.R. 1979 On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr. 9, 11551182.2.0.CO;2>CrossRefGoogle Scholar
Ni, Q., Zhai, X., Wang, G. & Marshall, D.P. 2020 Random movement of mesoscale eddies in the global ocean. J. Phys. Oceanogr. 50, 23412357.CrossRefGoogle Scholar
Nof, D. 1981 On the beta-induced movement of isolated baroclinic eddies. J. Phys. Oceanogr. 11, 16621672.2.0.CO;2>CrossRefGoogle Scholar
Nof, D. 1983 On the migration of isolated eddies with application to Gulf Stream rings. J. Mar. Res. 41, 399425.CrossRefGoogle Scholar
Nof, D., Jia, Y., Chassignet, E. & Bozec, A. 2011 Fast wind-induced migration of Leddies in the South China Sea. J. Phys. Oceanogr. 41, 16831693.CrossRefGoogle Scholar
Nycander, J. 1988 New stationary vortex solutions of the Hasegawa-Mima equation. J. Plasma Phys. 39, 413430.CrossRefGoogle Scholar
Nycander, J. 1994 Steady vortices in plasmas and geophysical flows. Chaos 4, 253267.CrossRefGoogle ScholarPubMed
Nycander, J. 2001 Drift velocity of radiating quasigeostrophic vortices. J. Phys. Oceanogr. 31, 21782185.2.0.CO;2>CrossRefGoogle Scholar
Olson, D.B. 1991 Rings in the ocean. Annu. Rev. Earth Planet. Sci. 19, 283311.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 710 pp. Springer.CrossRefGoogle Scholar
Pedlosky, J. 2010 Melvin E. Stern. Biographical Memoir. National Academy of Science.Google Scholar
Pérez-Hernández, M.D., McCarthy, G.D., Vélez-Belchí, P., Smeed, D.A., Fraile-Nuez, E. & Hernández-Guerra, A. 2015 The Canary Basin contribution to the seasonal cycle of the Atlantic Meridional Overturning Circulation at 26°N. J. Geophys. Res. Oceans 120, 72377252.CrossRefGoogle Scholar
Petersen, M.R., Williams, S.J., Maltrud, M.E., Hecht, M.W. & Hamann, B. 2013 A three-dimensional eddy census of a high-resolution global ocean simulation. J. Geophys. Res. Oceans 118, 17591774.CrossRefGoogle Scholar
Radko, T. 2008 Long range interaction and elastic collisions of isolated vortices. J. Fluid Mech. 610, 285310.CrossRefGoogle Scholar
Radko, T. 2020 Rectilinear propagation of quasi-monopolar vorticity patches. J. Fluid Mech. 904, A22.CrossRefGoogle Scholar
Radko, T. & Kamenkovich, I. 2017 On the topographic modulation of large-scale eddying flows. J. Phys. Oceanogr. 47, 21572172.CrossRefGoogle Scholar
Radko, T. & Stern, M.E. 1999 On the propagation of oceanic mesoscale vortices. J. Fluid Mech. 380, 3957.CrossRefGoogle Scholar
Reznik, G.M. & Dewar, W.K. 1994 An analytical theory of distributed axisymmetrical barotropic vortices on the beta-plane. J. Fluid Mech. 269, 301321.CrossRefGoogle Scholar
Reznik, G.M., Grimshaw, R. & Benilov, E.S. 2000 On the long-term evolution of an intense localized divergent vortex on the beta-plane. J. Fluid Mech. 422, 249280.CrossRefGoogle Scholar
Robinson, A.R. 1983 Eddies in Marine Science, 609 pp. Springer.CrossRefGoogle Scholar
Rossby, C.-G. 1948 On displacements and intensity changes of atmospheric vortices. J. Mar. Res 7, 175187.Google Scholar
Samelson, R.M., Schlax, M.G. & Chelton, D.B. 2014 Randomness, symmetry, and scaling of mesoscale eddy lifecycles. J. Phys. Oceanogr. 44, 10121029.CrossRefGoogle Scholar
Sokolovskiy, M.A. & Verron, J. 2014 Dynamics of Vortex Structures in a Stratified Rotating Fluid, Book Ser: Atmos. Oceanogr. Sci. Lib, vol. 47, 382 pp. Springer.CrossRefGoogle Scholar
Stern, M.E. 1975 Minimal properties of planetary eddies. J. Mar. Res. 33, 113.Google Scholar
Stern, M.E. 1987 Horizontal entrainment and detrainment in large-scale eddies. J. Phys. Oceanogr. 17, 16881695.2.0.CO;2>CrossRefGoogle Scholar
Stern, M.E. & Radko, T. 1998 The self-propagating quasi-monopolar vortex. J. Phys. Oceanogr. 28, 2239.2.0.CO;2>CrossRefGoogle Scholar
Sutyrin, G.G. & Carton, X. 2006 Vortex interaction with a zonal Rossby wave in a quasi-geostrophic model. Dyn. Atmos. Oceans 41, 85102.CrossRefGoogle Scholar
Sutyrin, G.G. & Flierl, G.R. 1994 : Intense vortex motion on the beta plane: Development of the beta gyres. J. Atmos. Sci. 51, 773790.2.0.CO;2>CrossRefGoogle Scholar
Sutyrin, G.G., Hesthaven, J.S., Lynov, J.P. & Rasmussen, J.J. 1994 Dynamical properties of vortical structures on the beta-plane. J. Fluid Mech. 268, 103131.CrossRefGoogle Scholar
Sutyrin, G.G. & Radko, T. 2019 On the peripheral intensification of two-dimensional vortices in a small-scale randomly forced flow. Phys. Fluids 31, 101701.CrossRefGoogle Scholar
Sutyrin, G. & Radko, T. 2021 Why the most long-lived oceanic vortices are found in the subtropical westward flows? Ocean Model. (accepted).CrossRefGoogle Scholar
Swenson, M. 1987 Instability of equivalent-barotropic riders. J. Phys. Oceanogr. 17, 492506.2.0.CO;2>CrossRefGoogle Scholar
Voropayev, S.I., McEachern, G.B., Boyer, D.L. & Fernando, H.J. 1999 Experiment on the self-propagating quasi-monopolar vortex. J. Phys. Oceanogr. 29, 27412751.2.0.CO;2>CrossRefGoogle Scholar
Zabusky, N.J. & McWilliams, J.C. 1982 A modulated point-vortex model for geostrophic, β-plane dynamics. Phys. Fluids 25, 21752182.CrossRefGoogle Scholar
Zavala Sansón, L. 2019 Nonlinear and time-dependent equivalent-barotropic flows. J. Fluid Mech. 871, 925951.CrossRefGoogle Scholar
Zavala Sansón, L. & van Heijst, G.J.F. 2002 Ekman effects in a rotating flow over bottom topography. J. Fluid. Mech. 471, 239255.CrossRefGoogle Scholar