Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T10:46:16.250Z Has data issue: false hasContentIssue false

Pinch-off of a surfactant-covered jet

Published online by Cambridge University Press:  11 December 2020

Hansol Wee
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
Brayden W. Wagoner
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
Vishrut Garg
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
Pritish M. Kamat
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
Osman A. Basaran*
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
*
Email address for correspondence: obasaran@purdue.edu

Abstract

Surfactants at fluid interfaces not only lower and cause gradients in surface tension but can induce additional surface rheological effects in response to dilatational and shear deformations. Surface tension and surface viscosities are both functions of surfactant concentration. Measurement of surface tension and determination of its effects on interfacial flows are now well established. Measurement of surface viscosities, however, is notoriously difficult. Consequently, quantitative characterization of their effects in interfacial flows has proven challenging. One reason behind this difficulty is that, with most existing methods of measurement, it is often impossible to isolate the effects of surface viscous stresses from those due to Marangoni stresses. Here, a combined asymptotic and numerical analysis is presented of the pinch-off of a surfactant-covered Newtonian liquid jet. Similarity solutions obtained from slender-jet theory and numerical solutions are presented for jets with and without surface rheological effects. Near pinch-off, it is demonstrated that Marangoni stresses become negligible compared to other forces. The rate of jet thinning is shown to be significantly lowered by surface viscous effects. From analysis of the dynamics near the pinch-off singularity, a simple analytical formula is derived for inferring surface viscosities. Three-dimensional, axisymmetric simulations confirm the validity of the asymptotic analyses but also demonstrate that a thinning jet traverses a number of intermediate regimes before eventually entering the final asymptotic regime.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Air Products, Allentown, PA 18195, USA.

§

Present address: Dow, Inc., Lake Jackson, TX 77566, USA.

References

REFERENCES

Ahmadi, M. A., Galedarzadeh, M. & Shadizadeh, S. R. 2015 Wettability alteration in carbonate rocks by implementing new derived natural surfactant: enhanced oil recovery applications. Trans. Porus Media 106 (3), 645667.CrossRefGoogle Scholar
Ambravaneswaran, B. & Basaran, O. A. 1999 Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges. Phys. Fluids 11 (5), 9971015.CrossRefGoogle Scholar
Ambravaneswaran, B., Phillips, S. D. & Basaran, O. A. 2000 Theoretical analysis of a dripping faucet. Phys. Rev. Lett. 85 (25), 53325335.CrossRefGoogle ScholarPubMed
Ambravaneswaran, B., Subramani, H. J., Phillips, S. D. & Basaran, O. A. 2004 Dripping-jetting transitions in a dripping faucet. Phys. Rev. Lett. 93 (3), 034501.CrossRefGoogle Scholar
Ambravaneswaran, B., Wilkes, E. D. & Basaran, O. A. 2002 Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys. Fluids 14 (8), 26062621.CrossRefGoogle Scholar
Anthony, C. R., Harris, M. T. & Basaran, O. A. 2020 Initial regime of drop coalescence. Phys. Rev. Fluids 5 (3), 033608.CrossRefGoogle Scholar
Anthony, C. R., Kamat, P. M., Harris, M. T. & Basaran, O. A. 2019 Dynamics of contracting filaments. Phys. Rev. Fluids 4 (9), 093601.CrossRefGoogle Scholar
Aris, R. 2012 Vectors, Tensors and the Basic Equations of Fluid Mechanics. Courier Corporation.Google Scholar
Basaran, O. A. 1992 Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241, 169198.CrossRefGoogle Scholar
Basaran, O. A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48 (9), 18421848.CrossRefGoogle Scholar
Basaran, O. A., Gao, H. & Bhat, P. P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85113.CrossRefGoogle Scholar
Berg, J. C. 2010 An introduction to Interfaces & Colloids: The Bridge to Nanoscience. World Scientific.Google Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, 2nd edn. Wiley.Google Scholar
Brenner, M. P., Lister, J. R. & Stone, H. A. 1996 Pinching threads, singularities and the number $0.0304\ldots$ Phys. Fluids 8 (11), 28272836.CrossRefGoogle Scholar
Castrejon-Pita, J. R., Baxter, W. R. S., Morgan, J., Temple, S., Martin, G. D. & Hutchings, I. M. 2013 Future, opportunities and challenges of inkjet technologies. Atomiz. Sprays 23 (6), 541565.CrossRefGoogle Scholar
Castrejón-Pita, J. R., Castrejón-Pita, A. A., Thete, S. S., Sambath, K., Hutchings, I. M., Hinch, J., Lister, J. R. & Basaran, O. A. 2015 Plethora of transitions during breakup of liquid filaments. Proc. Natl Acad. Sci. 112 (15), 45824587.CrossRefGoogle ScholarPubMed
Chen, Y. J. & Steen, P. H. 1997 Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech. 341, 245267.CrossRefGoogle Scholar
Christodoulou, K. N. & Scriven, L. E. 1992 Discretization of free surface flows and other moving boundary problems. J. Comput. Phys. 99 (1), 3955.CrossRefGoogle Scholar
Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2002 Pinchoff and satellite formation in surfactant covered viscous threads. Phys. Fluids 14 (4), 13641376.CrossRefGoogle Scholar
Day, R. F., Hinch, E. J. & Lister, J. R. 1998 Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80 (4), 704707.CrossRefGoogle Scholar
Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71 (21), 34583460.CrossRefGoogle ScholarPubMed
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3), 865930.CrossRefGoogle Scholar
Eggers, J. 2005 Drop formation–an overview. Z. Angew. Math. Mech. 85 (6), 400410.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
Elfring, G. J., Leal, L. G. & Squires, T. M. 2016 Surface viscosity and Marangoni stresses at surfactant laden interfaces. J. Fluid Mech. 792, 712739.CrossRefGoogle Scholar
Feng, J. Q. & Basaran, O. A. 1994 Shear flow over a translationally symmetric cylindrical bubble pinned on a slot in a plane wall. J. Fluid Mech. 275, 351378.CrossRefGoogle Scholar
Franses, E. I., Basaran, O. A. & Chang, C. H. 1996 Techniques to measure dynamic surface tension. Curr. Opin. Colloid Interface Sci. 1 (2), 296303.CrossRefGoogle Scholar
Gockenbach, M. S. 2006 Understanding and Implementing the Finite Element Method. SIAM.CrossRefGoogle Scholar
Gresho, P. M., Lee, R. L. & Sani, R. C. 1980 On the time-dependent solution of the incompressible Navier–Stokes equations in two and three dimensions. In Recent Advances Numerical Methods in Fluids (ed. C. Taylor & K. Morgan), pp. 27–79. Pineridge.Google Scholar
Gresho, P. M. & Sani, R. L. 1998 Incompressible Flow and the Finite Element Method. Volume 1: Advection-Diffusion and Isothermal Laminar Flow. John Wiley and Sons.Google Scholar
Hilz, E. & Vermeer, A. W. P. 2013 Spray drift review: the extent to which a formulation can contribute to spray drift reduction. Crop Protect. 44, 7583.CrossRefGoogle Scholar
Kamat, P. M., Wagoner, B. W., Thete, S. S. & Basaran, O. A. 2018 Role of Marangoni stress during breakup of surfactant-covered liquid threads: reduced rates of thinning and microthread cascades. Phys. Rev. Fluids 3 (4), 043602.CrossRefGoogle Scholar
Kooij, S., Sijs, R., Denn, M. M., Villermaux, E. & Bonn, D. 2018 What determines the drop size in sprays? Phys. Rev. X 8 (3), 031019.Google Scholar
Kovalchuk, N. M., Nowak, E. & Simmons, M. J. H. 2016 Effect of soluble surfactants on the kinetics of thinning of liquid bridges during drops formation and on size of satellite droplets. Langmuir 32 (20), 50695077.CrossRefGoogle ScholarPubMed
Li, Y. & Sprittles, J. E. 2016 Capillary breakup of a liquid bridge: identifying regimes and transitions. J. Fluid Mech. 797, 2959.CrossRefGoogle Scholar
Liao, Y. C., Franses, E. I. & Basaran, O. A. 2006 Deformation and breakup of a stretching liquid bridge covered with an insoluble surfactant monolayer. Phys. Fluids 18 (2), 022101.CrossRefGoogle Scholar
Lister, J. R. & Stone, H. A. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10 (11), 27582764.CrossRefGoogle Scholar
Martínez-Calvo, A., Rivero-Rodríguez, J., Scheid, B. & Sevilla, A. 2020 Natural break-up and satellite formation regimes of surfactant-laden liquid threads. J. Fluid Mech. 883, A35.CrossRefGoogle Scholar
Martínez-Calvo, A. & Sevilla, A. 2018 Temporal stability of free liquid threads with surface viscoelasticity. J. Fluid Mech. 846, 877901.CrossRefGoogle Scholar
McGough, P. T. & Basaran, O. A. 2006 Repeated formation of fluid threads in breakup of a surfactant-covered jet. Phys. Rev. Lett. 96 (5), 054502.CrossRefGoogle ScholarPubMed
Michael, D. H. 1981 Meniscus stability. Annu. Rev. Fluid Mech. 13 (1), 189216.CrossRefGoogle Scholar
Negin, C., Ali, S. & Xie, Q. 2017 Most common surfactants employed in chemical enhanced oil recovery. Petroleum 3 (2), 197211.CrossRefGoogle Scholar
Notter, R. H. 2000 Lung Surfactants: Basic Science and Clinical Applications. CRC Press.CrossRefGoogle Scholar
Notz, P. K. & Basaran, O. A. 2004 Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 512, 223256.CrossRefGoogle Scholar
Papageorgiou, D. T. 1995 On the breakup of viscous liquid threads. Phys. Fluids 7 (7), 15291544.CrossRefGoogle Scholar
Patzek, T. W., Benner, R. E. Jr., Basaran, O. A. & Scriven, L. E. 1991 Nonlinear oscillations of inviscid free drops. J. Comput. Phys. 97 (2), 489515.CrossRefGoogle Scholar
Plateau, J. 1873 Experimental and Theoretical Statics of Liquids Subject to Molecular Forces Only. Gauthier-Villars.Google Scholar
Ponce-Torres, A., Montanero, J. M., Herrada, M. A., Vega, E. J. & Vega, J. M. 2017 Influence of the surface viscosity on the breakup of a surfactant-laden drop. Phys. Rev. Lett. 118 (2), 024501.CrossRefGoogle ScholarPubMed
Rayleigh, L. 1878 On the instability of jets. Proc. Lond. Math. Soc. 1 (1), 413.CrossRefGoogle Scholar
Roché, M., Aytouna, M., Bonn, D. & Kellay, H. 2009 Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants. Phys. Rev. Lett. 103 (26), 264501.CrossRefGoogle ScholarPubMed
de Saint Vincent, M. R., Petit, J., Aytouna, M., Delville, J. P., Bonn, D. & Kellay, H. 2012 Dynamic interfacial tension effects in the rupture of liquid necks. J. Fluid Mech. 692, 499510.CrossRefGoogle Scholar
Scheid, B., Delacotte, J., Dollet, B., Rio, E., Restagno, F., Van Nierop, E. A., Cantat, I., Langevin, D. & Stone, H. A. 2010 The role of surface rheology in liquid film formation. Europhys. Lett. 90 (2), 24002.CrossRefGoogle Scholar
Scheid, B., Dorbolo, S., Arriaga, L. R. & Rio, E. 2012 Antibubble dynamics: the drainage of an air film with viscous interfaces. Phys. Rev. Lett. 109 (26), 264502.CrossRefGoogle ScholarPubMed
Schunk, P. R. & Scriven, L. E. 1997 Surfactant effects in coating processes. In Liquid Film Coating (ed. Kistler, S. F. & Schweizer, P. M.), pp. 495536. Springer.CrossRefGoogle Scholar
Scriven, L. E. 1960 Dynamics of a fluid interface equation of motion for newtonian surface fluids. Chem. Engng Sci. 12 (2), 98108.CrossRefGoogle Scholar
Shen, A. Q., Gleason, B., McKinley, G. H. & Stone, H. A. 2002 Fiber coating with surfactant solutions. Phys. Fluids 14 (11), 40554068.CrossRefGoogle Scholar
Stevenson, P. 2005 Remarks on the shear viscosity of surfaces stabilised with soluble surfactants. J. Colloid Interface Sci. 290 (2), 603606.CrossRefGoogle ScholarPubMed
Subramani, H. J., Yeoh, H. K., Suryo, R., Xu, Q., Ambravaneswaran, B. & Basaran, O. A. 2006 Simplicity and complexity in a dripping faucet. Phys. Fluids 18 (3), 032106.CrossRefGoogle Scholar
Timmermans, M.-L. E. & Lister, J. R. 2002 The effect of surfactant on the stability of a liquid thread. J. Fluid Mech. 459, 289306.CrossRefGoogle Scholar
Tricot, Y. M. 1997 Surfactants: Static and dynamic surface tension. In Liquid Film Coating: Scientific Principles and Their Technological Implications (ed. S. F. Kistler & P. M. Schweizer), pp. 99–136. Springer.CrossRefGoogle Scholar
Wee, H., Wagoner, B. W., Kamat, P. M. & Basaran, O. A. 2020 Effects of surface viscosity on breakup of viscous threads. Phys. Rev. Lett. 124 (20), 204501.CrossRefGoogle ScholarPubMed
Wilkes, E. D. & Basaran, O. A. 2001 Drop ejection from an oscillating rod. J. Colloid Interface Sci. 242 (1), 180201.CrossRefGoogle Scholar
Xu, Q., Liao, Y.-C. & Basaran, O. A. 2007 Can surfactant be present at pinch-off of a liquid filament? Phys. Rev. Lett. 98 (5), 054503.CrossRefGoogle ScholarPubMed
Zasadzinski, J. A., Ding, J., Warriner, H. E., Bringezu, F. & Waring, A. J. 2001 The physics and physiology of lung surfactants. Curr. Opin. Colloid Interface Sci. 6 (5–6), 506513.CrossRefGoogle Scholar
Zell, Z. A., Nowbahar, A., Mansard, V., Leal, L. G., Deshmukh, S. S., Mecca, J. M., Tucker, C. J. & Squires, T. M. 2014 Surface shear inviscidity of soluble surfactants. Proc. Natl Acad. Sci. 111 (10), 36773682.CrossRefGoogle ScholarPubMed
Zhang, X. & Basaran, O. A. 1997 Dynamic surface tension effects in impact of a drop with a solid surface. J. Colloid Interface Sci. 187 (1), 166178.CrossRefGoogle ScholarPubMed
Zhang, X., Padgett, R. S. & Basaran, O. A. 1996 Nonlinear deformation and breakup of stretching liquid bridges. J. Fluid Mech. 329, 207245.CrossRefGoogle Scholar