Hostname: page-component-68c7f8b79f-rgmxm Total loading time: 0 Render date: 2025-12-19T07:42:44.063Z Has data issue: false hasContentIssue false

Orbit dynamics of Janus drop in shear flow

Published online by Cambridge University Press:  19 December 2025

Jia-Qi Cheng
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Chun-Yu Zhang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, PR China
Jing-Wei Chen
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Hao-Ran Liu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Li-Juan Qian*
Affiliation:
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, PR China
Peng Gao
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
Hang Ding*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
*
Corresponding authors: Hang Ding, hding@ustc.edu.cn; Li-Juan Qian qianlj@cjlu.edu.cn
Corresponding authors: Hang Ding, hding@ustc.edu.cn; Li-Juan Qian qianlj@cjlu.edu.cn

Abstract

In this paper, we numerically investigate the orbit dynamics of three-dimensional symmetric Janus drops in shear flow using an improved ternary-fluids phase field method, focusing on how drop deformation and initial orientation affect the orbit drift of two configurations of Janus drops: dumbbell-shaped and near-spherical. We find that the motion of dumbbell-shaped drops eventually evolves into tumbling, while near-spherical drops attain stable spinning. We attribute this bifurcation in orbit drift to contrasting deformation dynamics and shape-dependent hydrodynamics of the two configurations. Specifically, the drift bifurcation is closely related to the aspect ratio of Janus drops at equilibrium, giving rise to two distinct mechanisms: (1) coupling between outer interface deformation and the surrounding flow field; and (2) interplay between inner interface deformation and vortices enclosed within the drop. In addition, we observe that for the dumbbell-shaped Janus drops with different aspect ratios, their tumbling dynamics resembles ellipsoids in shear flow. Moreover, the trajectories of the dumbbell-shaped Janus drops during orbit drift collapse onto a universal curve, independent of their initial orientations, and significant deformation and inertia accelerate the orbit transition. To quantitatively evaluate the effect of drop deformation on the orbit drift of the dumbbell-shaped Janus drops, we propose an effective aspect ratio model based on the drop shapes at equilibrium and at the maximum elongation. By incorporating the effective aspect ratio into Jeffery’s theory for solid particles, we accurately predict the rotation period and angular velocity of Janus drops in the tumbling regime and during the orbit drift, especially for drops with linear deformation. Moreover, the orbit parameter $C$ is found to vary exponentially with time for drops with linear deformation, while the time variation of $C$ transits from one exponential function to another for drops with nonlinear deformation.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The authors contributed equally to the article.

References

Abadi, R.H.H., Rahimian, M.H. & Fakhari, A. 2018 Conservative phase-field lattice-Boltzmann model for ternary fluids. J. Comput. Phys. 374, 668691.10.1016/j.jcp.2018.07.045CrossRefGoogle Scholar
Bonacci, F., Chakrabarti, B., Saintillan, D., du Roure, O. & Lindner, A. 2023 Dynamics of flexible filaments in oscillatory shear flows. J. Fluid Mech. 955, A35.10.1017/jfm.2022.1040CrossRefGoogle ScholarPubMed
Chen, J.-W., Zhang, C.-Y., Liu, H.-R. & Ding, H. 2025 Improved phase field model for two-phase incompressible flows: sharp interface limit, universal mobility and surface tension calculation. arXiv:2501.10167.Google Scholar
Cox, R.G. 1971 The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. J. Fluid Mech. 45, 625657.10.1017/S0022112071000259CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2016 The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. J. Fluid Mech. 791, 631703.10.1017/jfm.2016.14CrossRefGoogle Scholar
Daghooghi, M. & Borazjani, I. 2015 The influence of inertia on the rheology of a periodic suspension of neutrally buoyant rigid ellipsoids. J. Fluid Mech. 781, 506549.10.1017/jfm.2015.504CrossRefGoogle Scholar
Di Giusto, D., Bergougnoux, L., Marchioli, C. & Guazzelli, E. 2024 Influence of small inertia on Jeffery orbits. J. Fluid Mech. 979, A42.10.1017/jfm.2023.1007CrossRefGoogle Scholar
Díaz-Maldonado, M. & Córdova-Figueroa, U.M. 2015 On the anisotropic response of a Janus drop in a shearing viscous fluid. J. Fluid Mech. 770, R2.10.1017/jfm.2015.148CrossRefGoogle Scholar
Ding, H., Spelt, P.D.M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 20782095.10.1016/j.jcp.2007.06.028CrossRefGoogle Scholar
Einarsson, J., Candelier, F., Lundell, F., Angilella, J.R. & Mehlig, B. 2015 Effect of weak fluid inertia upon Jeffery orbits. Phys. Rev. E 91, 041002.10.1103/PhysRevE.91.041002CrossRefGoogle ScholarPubMed
Feng, J. & Joseph, D.D. 1995 The unsteady motion of solid bodies in creeping flows. J. Fluid Mech. 303, 83102.10.1017/S0022112095004186CrossRefGoogle Scholar
Goodling, A.E., Nagelberg, S., Kaehr, B., Meredith, C.H., Cheon, S.I., Saunders, A.P., Kolle, M. & Zarzar, L.D. 2019 Colouration by total internal reflection and interference at microscale concave interfaces. Nature 566, 523527.10.1038/s41586-019-0946-4CrossRefGoogle ScholarPubMed
Guazzelli, E. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.10.1017/jfm.2018.548CrossRefGoogle Scholar
Guo, P., Zeng, C.-F., Wang, C.-Q. & Zhang, L.-X. 2017 Magnetic ionic liquid-water Janus droplets: preparation, structure and morphology adjustment and magnetic manipulation. AIChE J. 63, 41154123.10.1002/aic.15672CrossRefGoogle Scholar
Hao, X., Du, T., He, H., Yang, F., Wang, Y., Liu, G. & Wang, Y. 2022 Microfluidic particle reactors: from interface characteristics to cells and drugs related biomedical applications. Adv. Mater. Interfaces 9, 2102184.10.1002/admi.202102184CrossRefGoogle Scholar
Harris, J.B. & Pittman, J.F.T. 1975 Equivalent ellipsoidal axis ratios of slender rod-like particles. J. Colloid Interface Sci. 50, 280282.10.1016/0021-9797(75)90231-3CrossRefGoogle Scholar
Huang, H.-B., Yang, X., Krafczyk, M. & Lu, X.-Y. 2012 Rotation of spheroidal particles in Couette flows. J. Fluid Mech. 692, 369394.10.1017/jfm.2011.519CrossRefGoogle Scholar
Hwang, D. & Yun, S. 2023 Bouncing characteristics of Janus drop impact on curved surfaces. Phys. Fluids 35, 062015.10.1063/5.0159002CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Jung, H.J. & Yun, S. 2023 Splitting behavior of Janus drop impact on protrusion structure. Phys. Fluids 35, 062105.10.1063/5.0155023CrossRefGoogle Scholar
Karnis, A., Goldsmith, H.L. & Mason, S.G. 1963 Axial migration of particles in Poseuille flow. Nature 200, 159160.10.1038/200159a0CrossRefGoogle Scholar
Leal, L.G. 1980 Particle motions in a viscous-fluid. Annu. Rev. Fluid Mech. 12, 435476.10.1146/annurev.fl.12.010180.002251CrossRefGoogle Scholar
Liu, H.-R., Ng, C.S., Chong, K.L., Lohse, D. & Verzicco, R. 2021 An efficient phase-field method for turbulent multiphase flows. J. Comput. Phys. 446, 110659.10.1016/j.jcp.2021.110659CrossRefGoogle Scholar
Liu, W.-K. & Park, J.M. 2022 Ternary modeling of the interaction between immiscible droplets in a confined shear flow. Phys. Rev. Fluids 7, 013604.10.1103/PhysRevFluids.7.013604CrossRefGoogle Scholar
Liu, W.-K. & Park, J.M. 2023 Numerical study on the engulfing behavior between immiscible droplets in a confined shear flow. Chem. Engng Sci. 266, 118265.10.1016/j.ces.2022.118265CrossRefGoogle Scholar
Mao, W. & Alexeev, A. 2014 Motion of spheroid particles in shear flow with inertia. J. Fluid Mech. 749, 145166.10.1017/jfm.2014.224CrossRefGoogle Scholar
Marath, N.K. & Subramanian, G. 2017 The effect of inertia on the time period of rotation of an anisotropic particle in simple shear flow. J. Fluid Mech. 830, 165210.10.1017/jfm.2017.534CrossRefGoogle Scholar
Mauer, J.S., Mendez, S., Lanotte, L., Nicoud, F., Abkarian, M., Gompper, G. & Fedosov, D.A. 2018 Flow-induced transitions of red blood cell shapes under shear. Phys. Rev. Lett. 121, 118103.10.1103/PhysRevLett.121.118103CrossRefGoogle ScholarPubMed
Olsson, E., Kreiss, G. & Zahedi, S. 2007 A conservative level set method for two phase flow II. J. Comput. Phys. 225, 785807.10.1016/j.jcp.2006.12.027CrossRefGoogle Scholar
Singh, V., Koch, D.L., Subramanian, G. & Stroock, A.D. 2014 Rotational motion of a thin axisymmetric disk in a low Reynolds number linear flow. Phys. Fluids 26, 033303.10.1063/1.4868520CrossRefGoogle Scholar
Slowicka, A.M., Stone, H.A. & Ekiel-Jezewska, M.L. 2020 Flexible fibers in shear flow approach attracting periodic solutions. Phys. Rev. E 101, 023104.10.1103/PhysRevE.101.023104CrossRefGoogle ScholarPubMed
Song, Q., Chao, Y., Zhang, Y. & Shum, H.C. 2021 Controlled formation of all-aqueous Janus droplets by liquid–liquid phase separation of an aqueous three-phase system. J. Phys. Chem. B 125, 562570.10.1021/acs.jpcb.0c09884CrossRefGoogle ScholarPubMed
Subramanian, G. & Koch, D.L. 2005 Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383414.10.1017/S0022112005004829CrossRefGoogle Scholar
Subramanian, G. & Koch, D.L. 2006 Inertial effects on the orientation of nearly spherical particles in simple shear flow. J. Fluid Mech. 557, 257296.10.1017/S0022112006009724CrossRefGoogle Scholar
Taylor, G.I. 1923 The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A 103, 5861.Google Scholar
Taylor, G.I. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138, 4148.Google Scholar
Thorp, I.R. & Lister, J.R. 2019 Motion of a non-axisymmetric particle in viscous shear flow. J. Fluid Mech. 872, 532559.10.1017/jfm.2019.367CrossRefGoogle Scholar
Torza, S. & Mason, S.G. 1970 Three-phase interactions in shear and electrical fields. J. Colloid Interface Sci. 33, 6783.10.1016/0021-9797(70)90073-1CrossRefGoogle Scholar
Trevelyan, B.J. & Mason, S.G. 1951 Particle motions in sheared suspensions. I. Rotations. J. Colloid Sci. 6, 354367.10.1016/0095-8522(51)90005-0CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.10.1146/annurev-fluid-010816-060135CrossRefGoogle Scholar
Wang, H., Wang, S., Mu, Y., Han, Q. & Cheng, Y. 2024 Dynamic breakup of Janus droplet in a bifurcating microchannel. Phys. Rev. Fluids 9, 064203.10.1103/PhysRevFluids.9.064203CrossRefGoogle Scholar
Yarin, A.L., Gottlieb, O. & Roisman, I.V. 1997 Chaotic rotation of triaxial ellipsoids in simple shear flow. J. Fluid Mech. 340, 83100.10.1017/S0022112097005260CrossRefGoogle Scholar
Yun, S., Kim, J. & Kim, G.H. 2022 Dynamic characteristics of ellipsoidal Janus drop impact on a solid surface. Phys. Fluids 34, 102104.10.1063/5.0118969CrossRefGoogle Scholar
Zhang, C.-Y., Chen, J.-L., Qian, L.-J. & Ding, H. 2023 Two-dimensional Janus drops in shear: deformation, rotation and their coupling. J. Fluid Mech. 976, A29.10.1017/jfm.2023.963CrossRefGoogle Scholar
Zhang, C.-Y., Ding, H., Gao, P. & Wu, Y.-L. 2016 Diffuse interface simulation of ternary fluids in contact with solid. J. Comput. Phys. 309, 3751.10.1016/j.jcp.2015.12.054CrossRefGoogle Scholar
Zhang, C.-Y., Gao, P., Li, E.-Q. & Ding, H. 2021 On the compound sessile drops: configuration boundaries and transitions. J. Fluid Mech. 917, A37.10.1017/jfm.2021.314CrossRefGoogle Scholar
Zhang, X. & Graham, M.D. 2020 Multiplicity of stable orbits for deformable prolate capsules in shear flow. Phys. Rev. Fluids 5, 023603.10.1103/PhysRevFluids.5.023603CrossRefGoogle ScholarPubMed
Zhu, Z.-Q., Chen, T.-A., Zhu, Y.-Q., Huang, F.-S., Mu, K., Si, T. & Xu, R.X. 2023 Programmable pulsed aerodynamic printing for multi-interface composite manufacturing. Matter 6, 20342051.10.1016/j.matt.2023.04.017CrossRefGoogle Scholar
Supplementary material: File

Cheng et al. supplementary movie 1

Tumbling mode of a dumbbell-shaped Janus droplet at θ0=π/6, Re=0.5 and Ca=0.05
Download Cheng et al. supplementary movie 1(File)
File 1.3 MB
Supplementary material: File

Cheng et al. supplementary movie 2

Tumbling mode of a dumbbell-shaped Janus droplet at θ0=π/6, Re=0.5 and Ca=0.2
Download Cheng et al. supplementary movie 2(File)
File 1.4 MB
Supplementary material: File

Cheng et al. supplementary movie 3

Spinning mode of a near-spherical Janus droplet at θ0=π/6, Re=1 and Ca=0.05
Download Cheng et al. supplementary movie 3(File)
File 1.2 MB