Published online by Cambridge University Press: 27 September 2010
The absolute/convective character of the linear instability of axisymmetric jets is investigated for a wide range of parallel velocity and density profiles. An adjoint-based sensitivity analysis is carried out in order to maximize the absolute growth rate of jet profiles with and without density variations. It is demonstrated that jets without counterflow may display absolute instability at density ratios well above the previously assumed threshold ρjet/ρ∞ = 0.72, and even in homogeneous settings. Absolute instability is promoted by a strong velocity gradient in the low-velocity region of the shear layer, as well as by a step-like density variation near the location of maximum shear. A new efficient algorithm for the computation of the absolute instability mode is presented.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.