Published online by Cambridge University Press: 10 March 2011
We address the challenge of optimal incompressible stirring to mix an initially inhomogeneous distribution of passive tracers. As a quantitative measure of mixing we adopt the H−1 norm of the scalar fluctuation field, equivalent to the (square root of the) variance of a low-pass filtered image of the tracer concentration field. First we establish that this is a useful gauge even in the absence of molecular diffusion: its vanishing as t → ∞ is evidence of the stirring flow's mixing properties in the sense of ergodic theory. Then we derive absolute limits on the total amount of mixing, as a function of time, on a periodic spatial domain with a prescribed instantaneous stirring energy or stirring power budget. We subsequently determine the flow field that instantaneously maximizes the decay of this mixing measure – when such a flow exists. When no such ‘steepest descent’ flow exists (a possible but non-generic situation), we determine the flow that maximizes the growth rate of the H−1 norm's decay rate. This local-in-time optimal stirring strategy is implemented numerically on a benchmark problem and compared to an optimal control approach using a restricted set of flows. Some significant challenges for analysis are outlined.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.