Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T14:55:40.477Z Has data issue: false hasContentIssue false

Optimal mode decomposition for unsteady flows

Published online by Cambridge University Press:  24 September 2013

A. Wynn*
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
D. S. Pearson
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
B. Ganapathisubramani
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK Aerodynamics and Flight Mechanics Group, University of Southampton, Southampton SO17 1BJ, UK
P. J. Goulart
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK Automatic Control Laboratory, ETH Zürich, 8092 Zurich, Switzerland
*
Email address for correspondence: a.wynn@imperial.ac.uk

Abstract

A new method, herein referred to as optimal mode decomposition (OMD), of finding a linear model to describe the evolution of a fluid flow is presented. The method estimates the linear dynamics of a high-dimensional system which is first projected onto a subspace of a user-defined fixed rank. An iterative procedure is used to find the optimal combination of linear model and subspace that minimizes the system residual error. The OMD method is shown to be a generalization of dynamic mode decomposition (DMD), in which the subspace is not optimized but rather fixed to be the proper orthogonal decomposition (POD) modes. Furthermore, OMD is shown to provide an approximation to the Koopman modes and eigenvalues of the underlying system. A comparison between OMD and DMD is made using both a synthetic waveform and an experimental data set. The OMD technique is shown to have lower residual errors than DMD and is shown on a synthetic waveform to provide more accurate estimates of the system eigenvalues. This new method can be used with experimental and numerical data to calculate the ‘optimal’ low-order model with a user-defined rank that best captures the system dynamics of unsteady and turbulent flows.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absil, P. A., Mahony, R. & Sepulchre, R. 2008 Optimization Algorithms on Matrix Manifolds. Princeton University Press.CrossRefGoogle Scholar
Bagheri, S. 2013 Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 726, 596623.CrossRefGoogle Scholar
Bonnet, J. P., Cole, D. R., Delville, J., Glauser, M. N. & Ukeiley, L. S. 1994 Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exp. Fluids 17, 307314.CrossRefGoogle Scholar
Budišić, M., Mohr, R. & Mezić, I. 2012 Applied Koopmanism. Chaos: An Interdisciplinary Journal of Nonlinear Science 22 (4), 047510.Google Scholar
Chen, K. K., Tu, J. H. & Rowley, C. W. 2012 Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22 (6), 887915.CrossRefGoogle Scholar
Duke, D., Soria, J. & Honnery, D. 2012 An error analysis of the dynamic mode decomposition. Exp. Fluids 52 (2), 529542.CrossRefGoogle Scholar
Edelman, A., Arias, T. A. & Smith, S. T. 1998 The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (2), 303353.CrossRefGoogle Scholar
Goulart, P. J., Wynn, A. & Pearson, D. 2012 Optimal mode decomposition for high dimensional systems. In 51st IEEE Conference on Decision and Control. Maui, Hawaii. Available at: http://control.ee.ethz.ch/~goularpa/.Google Scholar
Ilak, M. & Rowley, C. W. 2008 Modelling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20 (034103).Google Scholar
Juang, J.-N. & Pappa, R. S. 1985 An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8 (5), 2027.CrossRefGoogle Scholar
Lumley, J. L. 1970 Stochastic Tools in Turbulence. Academic.Google Scholar
Ma, Z., Ahuja, S. & Rowley, C. W. 2011 Reduced-order models for control of fluids using the eigensystem realization algorithm. Theor. Comp. Fluid Dyn. 25, 233247.CrossRefGoogle Scholar
Mezić, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45 (1), 357378.Google Scholar
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.Google Scholar
Pastoor, M., Henning, L., Noack, B. R., King, R. & Tadmor, G. 2008 Feeback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161196.Google Scholar
Rowley, C. W. 2005 Model reduction for fluids, using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (3), 9971013.CrossRefGoogle Scholar
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 85113.CrossRefGoogle Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.Google Scholar
Schmid, P. J. 2011 Application of the dynamic mode decomposition to experimental data. Exp. Fluids 50 (4), 11231130.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Maths 45, 561590.Google Scholar
Tadmor, G., Gonzalez, J., Lehmann, O., Noack, B. R., Morzyński, M. & Stankiewicz, W. 2007 Shift modes and transient dynamics in low order, design oriented Galerkin models. In 45th AIAA Aerospace Sciences Meeting and Exhibit, 8–11 January. AIAA Paper 2007-0111.Google Scholar