Hostname: page-component-68c7f8b79f-mk7jb Total loading time: 0 Render date: 2025-12-18T17:08:30.173Z Has data issue: false hasContentIssue false

Onset of vortex shedding behind a circular cylinder in a flowing soap film

Published online by Cambridge University Press:  18 December 2025

Izhar Hussain Khan
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur , Kanpur, Uttar Pradesh 208016, India
Sanjay Kumar*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur , Kanpur, Uttar Pradesh 208016, India
*
Corresponding author: Sanjay Kumar, skmr@iitk.ac.in

Abstract

In this experimental study, we investigate, for the first time, the structure and evolution of the near wake of a circular cylinder in a flowing soap film at the onset of vortex shedding. The study primarily focuses on the changes occurring within the recirculation bubble, along with the evolution of vortex shedding. A significantly large recirculation bubble forms behind the cylinder in the soap film environment, characterized by small-scale vortices along its edges, an observation that starkly contrasts with its three-dimensional counterparts. These small-scale vortices driven by the Kelvin–Helmholtz instability, further induce a transverse deflection of the recirculation bubble, leading to an intermittent generation of the wake vortices. The instantaneous velocity field in the wake is examined, highlighting the clear evidence of intermittency in vortex formation. The frequency and wavelength of the chain of small-scale vortices on the recirculation bubble is evaluated, and a functional relationship with the flow Reynolds number is determined. We believe this observation to be novel, potentially revealing a new pathway for understanding the two-dimensional transition in bluff-body wakes.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Balachandar, S., Mittal, R. & Najjar, F.M. 1997 Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies. J. Fluid Mech. 351, 167199.10.1017/S0022112097007179CrossRefGoogle Scholar
Bearman, P.W. 1967 The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge. Aeronaut. Quart. 18 (3), 207224.10.1017/S0001925900004212CrossRefGoogle Scholar
Bhattacharyya, S., Khan, I.H., Verma, S., Kumar, S. & Poddar, K. 2022 Experimental investigation of three-dimensional modes in the wake of a rotationally oscillating cylinder. J. Fluid Mech. 950, A10.10.1017/jfm.2022.792CrossRefGoogle Scholar
Bloor, M.S. 1964 The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19 (2), 290304.10.1017/S0022112064000726CrossRefGoogle Scholar
Chikkam, N.G. & Kumar, S. 2019 Flow past a rotating hydrophobic/nonhydrophobic circular cylinder in a flowing soap film. Phys. Rev. Fluids 4 (11), 114802.10.1103/PhysRevFluids.4.114802CrossRefGoogle Scholar
Etling, D. 2019 An unusual atmospheric vortex street. Environ. Fluid Mech. 19 (5), 13791391.10.1007/s10652-018-09654-wCrossRefGoogle Scholar
Gerrard, J.H. 1966 The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25 (2), 401413.10.1017/S0022112066001721CrossRefGoogle Scholar
Gerrard, J.H. 1978 The wakes of cylindrical bluff bodies at low Reynolds number. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 288 (1354), 351382.Google Scholar
Gharib, M. & Derango, P. 1989 A liquid film (soap film) tunnel to study two-dimensional laminar and turbulent shear flows. Phys. D: Nonlinear Phenom. 37 (1–3), 406416.10.1016/0167-2789(89)90145-0CrossRefGoogle Scholar
Homann, F. 1936 Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 16 (3), 153164.10.1002/zamm.19360160304CrossRefGoogle Scholar
Horváth, V.K., Cressman, J.R., Goldburg, W.I. & Wu, X.L. 2000 Hysteresis at low reynolds number: onset of two-dimensional vortex shedding. Phys. Rev. E 61 (5), R4702.10.1103/PhysRevE.61.R4702CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.10.1146/annurev.fl.22.010190.002353CrossRefGoogle Scholar
Jiang, H. 2020 Separation angle for flow past a circular cylinder in the subcritical regime. Phys. Fluids 32 (1), 014106.10.1063/1.5139479CrossRefGoogle Scholar
Khan, I.H., Sunil, P., Bhattacharyya, S., Yadav, R., Poddar, K. & Kumar, S. 2023 Flow past two rotationally oscillating cylinders. J. Fluid Mech. 969, A16.CrossRefGoogle Scholar
Khor, M., Sheridan, J. & Hourigan, K. 2011 Power-spectral density estimate of the bloor-gerrard instability in flows around circular cylinders. Exp. Fluids 50, 527534.10.1007/s00348-010-0955-4CrossRefGoogle Scholar
Kim, I. & Mandre, S. 2017 Marangoni elasticity of flowing soap films. Phys. Rev. Fluids 2 (8), 082001.10.1103/PhysRevFluids.2.082001CrossRefGoogle Scholar
Kovasznay, L. S. G. 1949 Hot-wire investigation of the wake behind cylinders at low Reynolds numbers. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 198 (1053), 174190.Google Scholar
Kumar, B. & Mittal, S. 2006 Prediction of the critical reynolds number for flow past a circular cylinder. Comput. Method. Appl. Mech. 195 (44–47), 60466058.10.1016/j.cma.2005.10.009CrossRefGoogle Scholar
Martin, B.K., Wu, X.L., Goldburg, W.I. & Rutgers, M.A. 1998 Spectra of decaying turbulence in a soap film. Phys. Rev. Lett. 80 (18), 3964.10.1103/PhysRevLett.80.3964CrossRefGoogle Scholar
Nishioka, M. & Sato, H. 1978 Mechanism of determination of the shedding frequency of vortices behind a cylinder at low reynolds numbers. J. Fluid Mech. 89 (1), 4960.10.1017/S0022112078002451CrossRefGoogle Scholar
Norberg, C. 1994 An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287316.10.1017/S0022112094003332CrossRefGoogle Scholar
Paranthoën, P., Browne, L.W.B., Le Masson, S., Dumouchel, F. & Lecordier, J.-C. 1999 Characteristics of the near wake of a cylinder at low reynolds numbers. Eur. J. Mech.-B/Fluids 18 (4), 659674.CrossRefGoogle Scholar
Prasad, A. & Williamson, C.H.K. 1997 The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375402.CrossRefGoogle Scholar
Prasad, V. & Weeks, E.R. 2009 Flow fields in soap films: relating viscosity and film thickness. Phys. Rev. E 80 (2), 026309.10.1103/PhysRevE.80.026309CrossRefGoogle ScholarPubMed
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard-von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.10.1017/S0022112087002222CrossRefGoogle Scholar
Qu, L., Norberg, C., Davidson, L., Peng, S.-H. & Wang, F. 2013 Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200. J. Fluid. Struct. 39, 347370.10.1016/j.jfluidstructs.2013.02.007CrossRefGoogle Scholar
Roshko, A. 1954 On the development of turbulent wakes from vortex streets. NACA Tech. Rep. 1191.Google Scholar
Roushan, P. & Wu, X.L. 2005a Structure-based interpretation of the Strouhal–Reynolds number relationship. Phys. Rev. Lett. 94 (5), 054504.10.1103/PhysRevLett.94.054504CrossRefGoogle ScholarPubMed
Roushan, P. & Wu, X.L. 2005b Universal wake structures of Kármán vortex streets in two-dimensional flows. Phys. Fluids 17 (7), 073601.10.1063/1.1943469CrossRefGoogle Scholar
Sane, A., Mandre, S. & Kim, I. 2018 Surface tension of flowing soap films. J. Fluid Mech. 841, R2.10.1017/jfm.2018.28CrossRefGoogle Scholar
Schnipper, T., Andersen, A. & Bohr, T. 2009 Vortex wakes of a flapping foil. J. Fluid Mech. 633, 411423.10.1017/S0022112009007964CrossRefGoogle Scholar
Seychelles, F., Amarouchene, Y., Bessafi, M. & Kellay, H. 2008 Thermal convection and emergence of isolated vortices in soap bubbles. Phys. Rev. Lett. 100 (14), 144501.10.1103/PhysRevLett.100.144501CrossRefGoogle ScholarPubMed
Sreenivasan, K.R., Strykowski, P.J. & Olinger, D.J. 1987 Hopf bifurcation, landau equation, and vortex shedding behind circular cylinders. In Forum on Unsteady Flow Separation, vol. 1, pp. 113. ASME.Google Scholar
Taneda, S. 1956 Experimental investigation of the wakes behind cylinders and plates at low reynolds numbers. J. Phys. Soc. Jpn. 11 (3), 302307.10.1143/JPSJ.11.302CrossRefGoogle Scholar
Taneda, S. 1963 The stability of two-dimensional Laminar wakes at low Reynolds numbers. J. Phys. Soc. Jpn. 18 (2), 288296.10.1143/JPSJ.18.288CrossRefGoogle Scholar
Unal, M.F. & Rockwell, D. 1988 On vortex formation from a cylinder. Part 1. The initial instability. J. Fluid Mech. 190, 491512.10.1017/S0022112088001429CrossRefGoogle Scholar
Vorobieff, P. & Ecke, R.E. 1999 Cylinder wakes in flowing soap films. Phys. Rev. E 60 (3), 2953.10.1103/PhysRevE.60.2953CrossRefGoogle ScholarPubMed
Wen, C.-Y. & Lin, C.-Y. 2001 Two-dimensional vortex shedding of a circular cylinder. Phys. Fluids 13 (3), 557560.CrossRefGoogle Scholar
Williamson, C.H.K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28 (1), 477539.10.1146/annurev.fl.28.010196.002401CrossRefGoogle Scholar
Williamson, C.H.K. & Brown, G.L. 1998 A series in Re to represent the strouhal–reynolds number relationship of the cylinder wake. J. Fluid. Struct. 12 (8), 10731085.10.1006/jfls.1998.0184CrossRefGoogle Scholar
Williamson, C.H.K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.CrossRefGoogle Scholar
Wu, J., Sheridan, J., Hourigan, K. & Soria, J. 1996 Shear layer vortices and longitudinal vortices in the near wake of a circular cylinder. Exp. Therm. Fluid Sci. 12 (2), 169174.CrossRefGoogle Scholar
Wu, M.-H., Wen, C.-Y., Yen, R.-H., Weng, M.-C. & Wang, A.-B. 2004 Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number. J. Fluid Mech. 515, 233260.CrossRefGoogle Scholar
Yang, W., Masroor, E. & Stremler, M.A. 2021 The wake of a transversely oscillating circular cylinder in a flowing soap film at low Reynolds number. J. Fluid. Struct. 105, 103343.10.1016/j.jfluidstructs.2021.103343CrossRefGoogle Scholar
Yang, W. & Stremler, M.A. 2019 Critical spacing of stationary tandem circular cylinders at Re = 100. J. Fluid. Struct. 89, 4960.10.1016/j.jfluidstructs.2019.02.023CrossRefGoogle Scholar
Zdravkovich, M.M. 1997 Flow Around Circular Cylinders: Volume 1: Fundamentals. Oxford University Press.10.1093/oso/9780198563969.001.0001CrossRefGoogle Scholar