Published online by Cambridge University Press: 07 September 2012
The steady-state fully resonant wave system, consisting of two progressive primary waves in finite water depth and all components due to nonlinear interaction, is investigated in detail by means of analytically solving the fully nonlinear wave equations as a nonlinear boundary-value problem. It is found that multiple steady-state fully resonant waves exist in some cases which have no exchange of wave energy at all, so that the energy spectrum is time-independent. Further, the steady-state resonant wave component may contain only a small proportion of the wave energy. However, even in these cases, there usually exist time-dependent periodic exchanges of wave energy around the time-independent energy spectrum corresponding to such a steady-state fully resonant wave, since it is hard to be exactly in such a balanced state in practice. This view serves to deepen and enrich our understanding of the resonance of gravity waves.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.