Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-09-13T00:58:30.268Z Has data issue: false hasContentIssue false

On the separation of air flow over waterwaves

Published online by Cambridge University Press:  11 April 2006

M. L. Banner
Affiliation:
Department of Theoretical and Applied Mechanics, School of Mathematics, University of New South Wales, Kensington, New South Wales, Australia 2033
W. K. Melville
Affiliation:
Department of Theoretical and Applied Mechanics, School of Mathematics, University of New South Wales, Kensington, New South Wales, Australia 2033

Abstract

Conditions leading to the onset of air-flow separation over a mobileair-water interface are discussed. It is argued that, in a frame ofreference in which the interfacial boundary assumes a steady shape,the occurrence of separation requires a stagnation point on theinterface. In the case of air blowing over water waves, thiscorresponds to the onset of wave breaking. These arguments arestrongly supported by flow visualization and pressure measurementscarried out in a laboratory wind-wave flume. Furthermore, thepressure measurements show a greatly enhanced interfacial shearstress for a breaking wave compared with that over an unbroken waveof the same wavelength. The implications of these findings forwind-wave generation are discussed.

Information

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Banner, M. L. & Peillips, O. M. 1974 J. Fluid Mech. 65, 647.Google Scholar
Barger, W. R., Garrett, W. D., Mollo-Ceristensen, E. L. & Ruggles, K. W. 1970 J. App1. Met. 9, 396.Google Scholar
Barnett, T. P. & Kenyon, K. E. 1975 Rep. Prog. Phys. 38, 667.Google Scholar
Batceelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Ceang, P. C., Plate, E. J. & Hidy, G. M. 1971 J. FZuid Mech. 47, 183.Google Scholar
Hasselmann, K. 1971 J. Fluid Mech. 50, 189.Google Scholar
Jeffreys, H. 1924 Proc. Roy. Soc. A 107, 189.Google Scholar
Jeffreys, H. 1925 Proc. Roy. Soc. A 110, 341.Google Scholar
Kendall, J. M. 1970 J. Fluid Mech. 41, 259.Google Scholar
Longuet-Higgins, M. S. 1960 J. Fluid Mech. 8, 293.Google Scholar
Longuet-Higgins, M. S. 1969a Phys. Fluids, 12, 737.Google Scholar
Longuet-Hiogins, M. S. 1969b Proc. Roy. Soc. A 311, 371.Google Scholar
Motzfeld, H. 1937 2. angew. Math. Mech. 17, 193.Google Scholar
Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Phllips, O. M. & Banner, M. L. 1974 J. Fluid Mech. 66, 625.Google Scholar
Stanton, T. E., Marshall, D. & Hougelton, R. 1932 Proc. Roy. Soc. A 137, 282.Google Scholar
Stewart, R. W. 1974 Boundary-Layer Met. 6, 151.Google Scholar
Ursell, F. 1956 In Surveys in Mechanics (ed. G. K. Batchelor), p. 216. Cambridge University Press.Google Scholar
Wu, J. 1969 Tellus, 21, 707.Google Scholar