Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T20:33:38.615Z Has data issue: false hasContentIssue false

On the rheology and magnetization of dilute magnetic emulsions under small amplitude oscillatory shear

Published online by Cambridge University Press:  12 January 2023

Rodrigo F. Abdo*
Affiliation:
Laboratory of Energy and Environment, Department of Mechanical Engineering, University of Brasília, Brasília, DF 70910-900, Brazil Federal Institute of Brasília - Estrutural Campus, Brasília, DF 71250-000, Brazil
Victor G. Abicalil*
Affiliation:
Laboratory of Energy and Environment, Department of Mechanical Engineering, University of Brasília, Brasília, DF 70910-900, Brazil
Lucas H.P. Cunha*
Affiliation:
Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
Taygoara F. Oliveira*
Affiliation:
Laboratory of Energy and Environment, Department of Mechanical Engineering, University of Brasília, Brasília, DF 70910-900, Brazil

Abstract

A dilute magnetic emulsion under the combined action of a uniform external magnetic field and a small amplitude oscillatory shear is studied using numerical simulations. We consider a three-dimensional domain with a single ferrofluid droplet suspended in a non-magnetizable Newtonian fluid. We present results of droplet shape and orientation, viscoelastic functions and bulk emulsion magnetization as functions of the shear oscillation frequency, magnetic field intensity and orientation. We also investigate how the magnetic field induces mechanical anisotropy by producing internal torques in oscillatory conditions. We found that, when the magnetic field is parallel to the shear plane, the droplet shape is mostly independent of the shear oscillation frequency. Regarding the viscometric functions, we show how the external magnetic field modifies the storage and loss moduli, especially for a field aligned to the main velocity gradient. The bulk emulsion magnetization is studied in the same fashion as the viscoelastic functions of the oscillatory shear. We show that the in-phase component of the magnetization with respect to the shear rate reaches a saturation magnetization, at the high frequencies limit, dependent on the magnetic field intensity and orientation. On the other hand, we found a non-zero out-of-phase response, which indicates a finite emulsion magnetization relaxation time. Our results indicate that the magnetization relaxation is closely related to the mechanical relaxation for dilute magnetic emulsions under oscillatory shear.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abicalil, V.G.e., Abdo, R.F., da Cunha, L.H.P. & de Oliveira, T.F. 2021 On the magnetization of dilute ferrofluid emulsions in shear flows. Phys. Fluids 33 (5), 053313.CrossRefGoogle Scholar
Badalassi, V.E., Ceniceros, H.D. & Banerjee, S. 2003 Computation of multiphase systems with phase field models. J. Comput. Phys. 190 (2), 371397.CrossRefGoogle Scholar
Bai, L., Huan, S., Rojas, O.J. & McClements, D.J. 2021 Recent innovations in emulsion science and technology for food applications. J. Agr. Food Chem. 69 (32), 89448963.CrossRefGoogle ScholarPubMed
Batchelor, G.K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (3), 545570.CrossRefGoogle Scholar
Bhatia, H., Norgard, G., Pascucci, V. & Bremer, P. 2013 The Helmholtz–Hodge decomposition—a survey. IEEE Trans. Vis. Comput. Graphics 19 (8), 13861404.CrossRefGoogle ScholarPubMed
Bijarchi, M.A., Dizani, M., Honarmand, M. & Shafii, M.B. 2021 Splitting dynamics of ferrofluid droplets inside a microfluidic T-junction using a pulse-width modulated magnetic field in micro-magnetofluidics. Soft Matt. 17 (5), 13171329.CrossRefGoogle ScholarPubMed
Bijarchi, M.A., Favakeh, A., Sedighi, E. & Shafii, M.B. 2020 Ferrofluid droplet manipulation using an adjustable alternating magnetic field. Sensors Actuators 301, 111753.CrossRefGoogle Scholar
Boudoukhani, M., Moulai-Mostefa, N. & Hammani, S. 2020 Prediction of rheological properties and interfacial tension of mixtures of immiscible polypropylene-polystyrene (pp3/ps) blends. Walailak J. Sci. Technol. (WJST) 17 (7), 665677.CrossRefGoogle Scholar
Bousmina, M. 1999 Rheology of polymer blends: linear model for viscoelastic emulsions. Rheol. Acta 38, 7383.CrossRefGoogle Scholar
Capobianchi, P., Lappa, M., Oliveira, M.S.N. & Pinho, F.T. 2021 Shear rheology of a dilute emulsion of ferrofluid droplets dispersed in a nonmagnetizable carrier fluid under the influence of a uniform magnetic field. J. Rheol. 65 (5), 925941.CrossRefGoogle Scholar
Cavallo, R., Guido, S. & Simeone, M. 2003 Drop deformation under small-amplitude oscillatory shear flow. Rheol. Acta 42 (1), 19.CrossRefGoogle Scholar
Chen, D., Yang, Z., Ji, Y., Dai, Y., Feng, L. & Arai, F. 2021 Deformable ferrofluid-based millirobot with high motion accuracy and high output force. Appl. Phys. Lett. 118 (13), 134101.CrossRefGoogle Scholar
Chorin, A.J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22 (104), 745762.CrossRefGoogle Scholar
Costa, P. 2018 A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows. Comput. Maths Applics. 76 (8), 18531862.CrossRefGoogle Scholar
Cunha, F.R. & Rosa, A.P. 2021 Effect of particle dipolar interactions on the viscoelastic response of dilute ferrofluids undergoing oscillatory shear. Phys. Fluids 33 (9), 092004.CrossRefGoogle Scholar
Cunha, L.H.P., Siqueira, I.R., Albuquerque, E.L. & Oliveira, T.F. 2018 a Flow of emulsion drops through a constricted microcapillary channel. Intl J. Multiphase Flow 103, 141150.CrossRefGoogle Scholar
Cunha, L.H.P., Siqueira, I.R., Campos, A.A.R., Rosa, A.P. & Oliveira, T.F. 2020 a A numerical study on heat transfer of a ferrofluid flow in a square cavity under simultaneous gravitational and magnetic convection. Theor. Comput. Fluid Dyn. 34 (1), 119132.CrossRefGoogle Scholar
Cunha, L.H.P., Siqueira, I.R., Cunha, F.R. & Oliveira, T.F. 2020 b Effects of external magnetic fields on the rheology and magnetization of dilute emulsions of ferrofluid droplets in shear flows. Phys. Fluids 32 (7), 073306.CrossRefGoogle Scholar
Cunha, L.H.P., Siqueira, I.R., Oliveira, T.F. & Ceniceros, H.D. 2018 b Field-induced control of ferrofluid emulsion rheology and droplet break-up in shear flows. Phys. Fluids 30 (12), 122110.CrossRefGoogle Scholar
De Siqueira, I.R., Rebouças, R.B., Da Cunha, L.H.P. & De Oliveira, T.F. 2018 On the volume conservation of emulsion drops in boundary integral simulations. J. Braz. Soc. Mech. Sci. Engng 40 (1), 3.CrossRefGoogle Scholar
Dierking, I., Yoshida, S., Kelly, T. & Pitcher, W. 2020 Liquid crystal–ferrofluid emulsions. Soft Matt. 16 (26), 60216031.CrossRefGoogle ScholarPubMed
Dodd, M.S. & Ferrante, A. 2014 A fast pressure-correction method for incompressible two-fluid flows. J. Comput. Phys. 273, 416434.CrossRefGoogle Scholar
Fan, X., Dong, X., Karacakol, A.C., Xie, H. & Sitti, M. 2020 a Reconfigurable multifunctional ferrofluid droplet robots. Proc. Natl Acad. Sci. USA 117 (45), 2791627926.CrossRefGoogle ScholarPubMed
Fan, X., Sun, M., Sun, L. & Xie, H. 2020 b Ferrofluid droplets as liquid microrobots with multiple deformabilities. Adv. Funct. Mater. 30 (24), 2000138.CrossRefGoogle Scholar
Fröhlich, A. & Sack, R. 1946 Theory of the rheological properties of dispersions. Proc. R. Soc. Lond. A 185 (1003), 415430.Google ScholarPubMed
Ghigliotti, G., Biben, T. & Misbah, C. 2010 Rheology of a dilute two-dimensional suspension of vesicles. J. Fluid Mech. 653, 489518.CrossRefGoogle Scholar
Gibou, F., Fedkiw, R. & Osher, S. 2018 A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82109.CrossRefGoogle Scholar
Gottlieb, S., Ketcheson, D.I. & Shu, C.-W. 2011 Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific.CrossRefGoogle Scholar
Graebling, D., Muller, R. & Palierne, J.F. 1993 Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26 (2), 320329.CrossRefGoogle Scholar
Guido, C.J. & Shaqfeh, E.S.G. 2019 The rheology of soft bodies suspended in the simple shear flow of a viscoelastic fluid. J. Non-Newtonian Fluid Mech. 273, 104183.CrossRefGoogle Scholar
Guido, S., Grosso, M. & Maffettone, P.L. 2004 Newtonian drop in a Newtonian matrix subjected to large amplitude oscillatory shear flows. Rheol. Acta 43 (6), 575583.CrossRefGoogle Scholar
Harlow, F.H. & Welch, J.E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (12), 21822189.CrossRefGoogle Scholar
Hassan, Md.R. & Wang, C. 2019 Magnetic field induced ferrofluid droplet breakup in a simple shear flow at a low Reynolds number. Phys. Fluids 31 (12), 127104.CrossRefGoogle Scholar
Hassan, Md.R., Zhang, J. & Wang, C. 2018 Deformation of a ferrofluid droplet in simple shear flows under uniform magnetic fields. Phys. Fluids 30 (9), 092002.CrossRefGoogle Scholar
Ioannou, N., Liu, H. & Zhang, Y.H. 2016 Droplet dynamics in confinement. J. Comput. Sci. 17, 463474.CrossRefGoogle Scholar
Ishida, S. & Matsunaga, D. 2020 Rheology of a dilute ferrofluid droplet suspension in shear flow: viscosity and normal stress differences. Phys. Rev. Fluids 5, 123603.CrossRefGoogle Scholar
Ishida, S., Yang, Y., Meng, F. & Matsunaga, D. 2022 Field-controlling patterns of sheared ferrofluid droplets. Phys. Fluids 34 (6), 063309.CrossRefGoogle Scholar
Jaiswal, M., Dudhe, R. & Sharma, P.K. 2015 Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 5 (2), 123127.CrossRefGoogle ScholarPubMed
Jesus, W.C., Roma, A.M. & Ceniceros, H.D. 2018 Deformation of a sheared magnetic droplet in a viscous fluid. Commun. Comput. Phys. 24 (2), 332355.CrossRefGoogle Scholar
Ji, Y., Dai, Y., Chen, D., Gan, C., Wang, L. & Feng, L. 2021 Precise control of ferrofluid droplet robot in 3-D vascular model. In 2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA), pp. 122–127. IEEE. https://ieeexplore.ieee.org/document/9612669.Google Scholar
Jiang, G.-S. & Peng, D. 2000 Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21 (6), 21262143.CrossRefGoogle Scholar
Jiang, H., Sheng, Y. & Ngai, T. 2020 Pickering emulsions: versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 49, 115.CrossRefGoogle ScholarPubMed
Kennedy, M.R., Pozrikidis, C. & Skalak, R. 1994 Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Comput. Fluids 23 (2), 251278.CrossRefGoogle Scholar
Kerner, E.H. 1956 The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. 69 (8), 808813.CrossRefGoogle Scholar
Kim, K.-M., Oh, H.M. & Lee, J.H. 2020 Controlling the emulsion stability of cosmetics through shear mixing process. Korea-Aust. Rheol. J. 32 (4), 243249.CrossRefGoogle Scholar
Liao, H., Li, S., Liu, C. & Tao, G. 2020 Rheological investigation with Palierne's model on a polystyrene/nylon 6 blending melt compatibilized by a polystyrene grafted maleic anhydride. Open J. Org. Polym. Mater. 10 (2), 1725.CrossRefGoogle Scholar
Liu, Q., Li, H. & Lam, K.Y. 2018 Optimization of deformable magnetic-sensitive hydrogel-based targeting system in suspension fluid for site-specific drug delivery. Mol. Pharm. 15 (10), 46324642.CrossRefGoogle ScholarPubMed
Maffettone, P.L. & Minale, M. 1998 Equation of change for ellipsoidal drops in viscous flow. J. Non-Newtonian Fluid Mech. 78 (2), 227241.CrossRefGoogle Scholar
Mandal, S., Sinha, S., Bandopadhyay, A. & Chakraborty, S. 2018 Drop deformation and emulsion rheology under the combined influence of uniform electric field and linear flow. J. Fluid Mech. 841, 408433.CrossRefGoogle Scholar
Maphosa, Y. 2018 Factors Affecting the Stability of Emulsions Stabilised by Biopolymers. IntechOpen.CrossRefGoogle Scholar
McAdams, A., Sifakis, E. & Teran, J. 2010 A parallel multigrid poisson solver for fluids simulation on large grids. In Eurographics/ACM SIGGRAPH symposium on Computer Animation (ed. M. Popovic & M. Otaduy), pp. 65–73. The Eurographics Association.Google Scholar
Mefford, O.T., Woodward, R.C., Goff, J.D., Vadala, T.P., St. Pierre, T.G., Dailey, J.P. & Riffle, J.S. 2007 Field-induced motion of ferrofluids through immiscible viscous media: testbed for restorative treatment of retinal detachment. J. Magn. Magn. Mater. 311 (1), 347353.CrossRefGoogle Scholar
Oldroyd, J.G. & Taylor, G.I. 1955 The effect of interfacial stabilizing films on the elastic and viscous properties of emulsions. Proc. R. Soc. Lond. A 232 (1191), 567577.Google Scholar
Oldroyd, J.G. & Wilson, A.H. 1950 On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 200 (1063), 523541.Google Scholar
Oldroyd, J.G. & Wilson, A.H. 1953 The elastic and viscous properties of emulsions and suspensions. Proc. R. Soc. Lond. A 218 (1132), 122132.Google Scholar
Oliveira, T.F. & Cunha, F.R. 2015 Emulsion rheology for steady and oscillatory shear flows at moderate and high viscosity ratio. Rheol. Acta 54 (11), 951971.CrossRefGoogle Scholar
Osher, S. & Sethian, J.A. 1988 Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79 (1), 1249.CrossRefGoogle Scholar
Osher, S.J. & Fedkiw, R. 2003 Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer.CrossRefGoogle Scholar
Pal, R. 2011 Rheology of simple and multiple emulsions. Curr. Opin. Colloid Interface Sci. 16 (1), 4160.CrossRefGoogle Scholar
Palierne, J.F. 1990 Linear rheology of viscoelastic emulsions with interfacial tension. Rheol. Acta 29 (3), 204214.CrossRefGoogle Scholar
Peng, D., Merriman, B., Osher, S., Zhao, H. & Kang, M. 1999 A PDE-based fast local level set method. J. Comput. Phys. 155 (2), 410438.CrossRefGoogle Scholar
Pimenta, P.H.N. & Oliveira, T.F. 2021 Study on the rheology of a dilute emulsion of surfactant-covered droplets using the level set and closest point methods. Phys. Fluids 33 (10), 103306.CrossRefGoogle Scholar
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2019 Electrorheology of a dilute emulsion of surfactant-covered drops. J. Fluid Mech. 881, 524550.CrossRefGoogle Scholar
Raja, R.V., Subramanian, G. & Koch, D.L. 2010 Inertial effects on the rheology of a dilute emulsion. J. Fluid Mech. 646, 255296.CrossRefGoogle Scholar
Ray, A., Varma, V.B., Jayaneel, P.J., Sudharsan, N.M., Wang, Z.P. & Ramanujan, R.V. 2017 On demand manipulation of ferrofluid droplets by magnetic fields. Sensors Actuators 242, 760768.CrossRefGoogle Scholar
Roodan, V.A., Gómez-Pastora, J., Karampelas, I.H., González-Fernández, C., Bringas, E., Ortiz, I., Chalmers, J.J, Furlani, E.P. & Swihart, M.T. 2020 Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: a numerical parametric study. Soft Matt. 16 (41), 95069518.CrossRefGoogle Scholar
Rosa, A.P. & Cunha, F.R. 2019 The influence of dipolar particle interactions on the magnetization and the rotational viscosity of ferrofluids. Phys. Fluids 31 (5), 052006.CrossRefGoogle Scholar
Rosa, A.P. & Cunha, F.R. 2020 Shear rate dependence of viscosity and normal stress differences in ferrofluids. J. Magn. Magn. Mater. 499, 166184.CrossRefGoogle Scholar
Rosensweig, R.E. 2013 Ferrohydrodynamics. Courier Corporation.Google Scholar
Sen, U., Chatterjee, S., Sen, S., Tiwari, M.K., Mukhopadhyay, A. & Ganguly, R. 2017 Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications. J. Magn. Magn. Mater. 421, 165176.CrossRefGoogle Scholar
Shu, C.-W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (2), 439471.CrossRefGoogle Scholar
Siqueira, I.R., Rebouças, R.B., Oliveira, T.F. & Cunha, F.R. 2017 A new mesh relaxation approach and automatic time-step control method for boundary integral simulations of a viscous drop. Intl J. Numer. Meth. Fluids 84 (4), 221238.CrossRefGoogle Scholar
Spatafora-Salazar, A., Lobmeyer, D., da Cunha, L.H.P., Joshi, K. & Biswal, S.L. 2021 Hierarchical assemblies of superparamagnetic colloids in time-varying magnetic fields. Soft Matt. 17 (5), 11201155. The Royal Society of Chemistry.CrossRefGoogle ScholarPubMed
Sussman, M. & Fatemi, E. 1999 An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20 (4), 11651191.CrossRefGoogle Scholar
Sussman, M., Fatemi, E., Smereka, P. & Osher, S. 1998 An improved level set method for incompressible two-phase flows. Comput. Fluids 27 (5–6), 663680.CrossRefGoogle Scholar
Taylor, G.I. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138 (834), 4148.Google Scholar
Témam, R. 1969 a Sur l'approximation de la solution des équations de navier-stokes par la méthode des pas fractionnaires (i). Arch. Rat. Mech. Anal. 32 (2), 135153.CrossRefGoogle Scholar
Témam, R. 1969 b Sur l'approximation de la solution des équations de navier-stokes par la méthode des pas fractionnaires (ii). Arch. Rat. Mech. Anal. 33 (5), 377385.CrossRefGoogle Scholar
Vananroye, A., Van Puyvelde, P. & Moldenaers, P. 2006 Effect of confinement on droplet breakup in sheared emulsions. Langmuir 22 (9), 39723974.CrossRefGoogle ScholarPubMed
Varma, V.B., Ray, A., Wang, Z.M., Wang, Z.P. & Ramanujan, R.V. 2016 Droplet merging on a lab-on-a-chip platform by uniform magnetic fields. Sci. Rep. 6 (1), 112.CrossRefGoogle ScholarPubMed
Vlahovska, P.M. 2011 On the rheology of a dilute emulsion in a uniform electric field. J. Fluid Mech. 670, 481503.CrossRefGoogle Scholar
Vlahovska, P.M., Bławzdziewicz, J. & Loewenberg, M. 2009 Small-deformation theory for a surfactant-covered drop in linear flows. J. Fluid Mech. 624, 293337.CrossRefGoogle Scholar
Voltairas, P.A., Fotiadis, D.I. & Massalas, C.V. 2001 Elastic stability of silicone ferrofluid internal tamponade (SFIT) in retinal detachment surgery. J. Magn. Magn. Mater. 225 (1–2), 248255.CrossRefGoogle Scholar
Wannaborworn, S., Mackley, M.R. & Renardy, Y. 2002 Experimental observation and matching numerical simulation for the deformation and breakup of immiscible drops in oscillatory shear. J. Rheol. 46 (5), 12791293.CrossRefGoogle Scholar
Zhang, J., Hassan, M.R., Rallabandi, B. & Wang, C. 2019 Migration of ferrofluid droplets in shear flow under a uniform magnetic field. Soft Matt. 15 (11), 24392446.CrossRefGoogle Scholar

Abdo et al. Supplementary Movie

See "Abdo et al. Supplementary Movie Caption"
Download Abdo et al. Supplementary Movie(Video)
Video 313.8 KB
Supplementary material: PDF

Abdo et al. Supplementary Movie Caption

Abdo et al. Supplementary Movie Caption

Download Abdo et al. Supplementary Movie Caption(PDF)
PDF 14.2 KB