Hostname: page-component-65f69f4695-5b78l Total loading time: 0 Render date: 2025-06-26T19:28:26.765Z Has data issue: false hasContentIssue false

On the origin of circular rolls in rotor-stator flow

Published online by Cambridge University Press:  27 November 2024

A. Gesla
Affiliation:
Sorbonne Université, F-75005 Paris, France LISN-CNRS, Université Paris-Saclay, F-91400 Orsay, France
Y. Duguet
Affiliation:
LISN-CNRS, Université Paris-Saclay, F-91400 Orsay, France
P. Le Quéré
Affiliation:
LISN-CNRS, Université Paris-Saclay, F-91400 Orsay, France
L. Martin Witkowski*
Affiliation:
Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, LMFA, UMR5509, 69622 Villeurbanne, France
*
Email address for correspondence: laurent.martin-witkowski@univ-lyon1.fr

Abstract

Rotor-stator flows are known to exhibit instabilities in the form of circular and spiral rolls. While the spirals are known to emanate from a supercritical Hopf bifurcation, the origin of the circular rolls is still unclear. In the present work we suggest a quantitative scenario for the circular rolls as a response of the system to external forcing. We consider two types of axisymmetric forcing: bulk forcing (based on the resolvent analysis) and boundary forcing using direct numerical simulation. Using the singular value decomposition of the resolvent operator the optimal response is shown to take the form of circular rolls. The linear gain curve shows strong amplification at non-zero frequencies following a pseudo-resonance mechanism. The optimal energy gain is found to scale exponentially with the Reynolds number $Re$ (for $Re$ based on the rotation rate and interdisc spacing $H$). The results for both types of forcing are compared with former experimental works and previous numerical studies. Our findings suggest that the circular rolls observed experimentally are the effect of the high forcing gain together with the roll-like form of the leading response of the linearised operator. For high enough Reynolds number it is possible to delineate between linear and nonlinear responses. For sufficiently strong forcing amplitudes, the nonlinear response is consistent with the self-sustained states found recently for the unforced problem. The onset of such non-trivial dynamics is shown to correspond in state space to a deterministic leaky attractor, as in other subcritical wall-bounded shear flows.

Information

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avila, K., Moxey, D., De Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.CrossRefGoogle ScholarPubMed
Avila, M., Barkley, D. & Hof, B. 2023 Transition to turbulence in pipe flow. Annu. Rev. Fluid Mech. 55, 575602.CrossRefGoogle Scholar
Avila, M., Willis, A.P. & Hof, B. 2010 On the transient nature of localized pipe flow turbulence. J. Fluid Mech. 646, 127136.CrossRefGoogle Scholar
Batchelor, G.K. 1951 Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech. Appl. Maths 4, 2941.CrossRefGoogle Scholar
Bertolotti, F.P., Herbert, T. & Spalart, P.R. 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.CrossRefGoogle Scholar
Blackburn, H.M., Barkley, D. & Sherwin, S.J. 2008 Convective instability and transient growth in flow over a backward-facing step. J. Fluid Mech. 603, 271304.CrossRefGoogle Scholar
Bottin, S. & Chaté, H. 1998 Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B 6, 143155.CrossRefGoogle Scholar
Brady, J.F. & Durlofsky, L. 1987 On rotating disk flow. J. Fluid Mech. 175, 363394.CrossRefGoogle Scholar
Brynjell-Rahkola, M., Shahriari, N., Schlatter, P., Hanifi, A. & Henningson, D.S. 2017 Stability and sensitivity of a cross-flow-dominated Falkner–Skan–Cooke boundary layer with discrete surface roughness. J. Fluid Mech. 826, 830850.CrossRefGoogle Scholar
Cerqueira, S. & Sipp, D. 2014 Eigenvalue sensitivity, singular values and discrete frequency selection mechanism in noise amplifiers: the case of flow induced by radial wall injection. J. Fluid Mech. 757, 770799.CrossRefGoogle Scholar
Daube, O. & Le Quéré, P. 2002 Numerical investigation of the first bifurcation for the flow in a rotor-stator cavity of radial aspect ratio 10. Comput. Fluids 31, 481494.CrossRefGoogle Scholar
Do, Y., Lopez, J.M. & Marques, F. 2010 Optimal harmonic response in a confined Bödewadt boundary layer flow. Phys. Rev. E 82 (3), 036301.CrossRefGoogle Scholar
Eckhardt, B. 2018 Transition to turbulence in shear flows. Physica A 504, 121129.CrossRefGoogle Scholar
Faugaret, A. 2020 Influence of air-water interface condition on rotating flow stability: experimental and numerical exploration. PhD thesis, Sorbonne Université, Paris, France.Google Scholar
Faugaret, A., Duguet, Y., Fraigneau, Y. & Martin Witkowski, L. 2022 A simple model for arbitrary pollution effects on rotating free-surface flows. J. Fluid Mech. 935, A2.CrossRefGoogle Scholar
Garnaud, X., Lesshafft, L., Schmid, P.J. & Huerre, P. 2013 The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.CrossRefGoogle Scholar
Gauthier, G. 1998 Étude expérimentale des instabilités de l’écoulement entre deux disques. PhD thesis, Université Paris XI, France.Google Scholar
Gauthier, G., Gondret, P. & Rabaud, M. 1999 Axisymmetric propagating vortices in the flow between a stationary and a rotating disk enclosed by a cylinder. J. Fluid Mech. 386, 105126.CrossRefGoogle Scholar
Gelfgat, A.Y. 2015 Primary oscillatory instability in a rotating disk-cylinder system with aspect (height/radius) ratio varying from 0.1 to 1. Fluid Dyn. Res. 47, 035502(14).CrossRefGoogle Scholar
Gesla, A., Duguet, Y., Le Quéré, P. & Martin Witkowski, L. 2024 Subcritical axisymmetric solutions in rotor-stator flow. Phys. Rev. Fluids 9, 083903.CrossRefGoogle Scholar
Grossmann, S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72 (2), 603.CrossRefGoogle Scholar
Guermond, J.L., Minev, P.D. & Shen, J. 2006 An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Engng 195, 60116045.CrossRefGoogle Scholar
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29 (1), 245283.CrossRefGoogle Scholar
Hof, B., De Lozar, A., Kuik, D.J. & Westerweel, J. 2008 Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett. 101 (21), 214501.CrossRefGoogle ScholarPubMed
Holodniok, M., Kubicek, M. & Hlavacek, V. 1977 Computation of the flow between two rotating coaxial disks. J. Fluid Mech. 81 (4), 689699.CrossRefGoogle Scholar
Jin, B., Symon, S. & Illingworth, S.J. 2021 Energy transfer mechanisms and resolvent analysis in the cylinder wake. Phys. Rev. Fluids 6 (2), 024702.CrossRefGoogle Scholar
Jovanović, M.R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Lai, Y.-C. & Tél, T. 2011 Transient Chaos: Complex Dynamics on Finite Time Scales, Applied Mathematical Sciences, vol. 173. Springer Science & Business Media.CrossRefGoogle Scholar
Launder, B., Poncet, S. & Serre, E. 2010 Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu. Rev. Fluid Mech. 42, 229248.CrossRefGoogle Scholar
Lawless, J.F. 2003 Statistical Models and Methods for Lifetime Data. Wiley Series in Probability and Statistics. John Wiley & Sons.Google Scholar
Lehoucq, R., Sorensen, D. & Yang, C. 1998 ARPACK Users’ Guide: Solution of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.CrossRefGoogle Scholar
Lopez, J.M., Marques, F., Rubio, A.M. & Avila, M. 2009 Crossflow instability of finite Bödewadt flows: transients and spiral waves. Phys. Fluids 21, 114107.CrossRefGoogle Scholar
Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113, 084501.CrossRefGoogle ScholarPubMed
Martinand, D., Serre, E. & Viaud, B. 2023 Instabilities and routes to turbulence in rotating disc boundary layers and cavities. Phil. Trans. R. Soc. A 381 (2243), 20220135.CrossRefGoogle ScholarPubMed
Pier, B. & Huerre, P. 2001 Nonlinear self-sustained structures and fronts in spatially developing wake flows. J. Fluid Mech. 435, 145174.CrossRefGoogle Scholar
Poncet, S., Serre, E. & Le Gal, P. 2009 Revisiting the two first instabilities of the flow in an annular rotor-stator cavity. Phys. Fluids 21, 064106(8).CrossRefGoogle Scholar
Rigas, G., Sipp, D. & Colonius, T. 2021 Nonlinear input/output analysis: application to boundary layer transition. J. Fluid Mech. 911, A15.CrossRefGoogle Scholar
Savas, O. 1987 Stability of Bödewadt flow. J. Fluid Mech. 183, 77–94.CrossRefGoogle Scholar
Schmid, P.J. & Brandt, L. 2014 Analysis of fluid systems: stability, receptivity, sensitivity: lecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66 (2), 024803.CrossRefGoogle Scholar
Schouveiler, L., Le Gal, P. & Chauve, M.P. 1998 Stability of a traveling roll system in a rotating disk flow. Phys. Fluids 10, 26952697.CrossRefGoogle Scholar
Schouveiler, L., Le Gal, P. & Chauve, M.P. 2001 Instabilities of the flow between a rotating and a stationary disk. J. Fluid Mech. 443, 329350.CrossRefGoogle Scholar
Serre, E., Crespo Del Arco, E. & Bontoux, P. 2001 Annular and spiral patterns in flows between rotating and stationary discs. J. Fluid Mech. 434, 65100.CrossRefGoogle Scholar
Serre, E., Tuliszka-Sznitko, E. & Bontoux, P. 2004 Coupled numerical and theoretical study of the flow transition between a rotating and a stationary disk. Phys. Fluids 16, 688706.CrossRefGoogle Scholar
Stewartson, K. 1953 On the flow between two rotating coaxial disks. Proc. Camb. Phil. Soc. 49, 333341.CrossRefGoogle Scholar
Tél, T. & Lai, Y.-C. 2008 Chaotic transients in spatially extended systems. Phys. Rep. 460 (6), 245275.CrossRefGoogle Scholar
Trefethen, L.N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.CrossRefGoogle Scholar
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.CrossRefGoogle ScholarPubMed
Xu, D., Song, B. & Avila, M. 2021 Non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. J. Fluid Mech. 907, R5.CrossRefGoogle Scholar
Zandbergen, P.J. & Dijkstra, D. 1987 Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19 (1), 465491.CrossRefGoogle Scholar