Hostname: page-component-5b777bbd6c-j65dx Total loading time: 0 Render date: 2025-06-25T01:06:45.475Z Has data issue: false hasContentIssue false

On the mean structure and unsteadiness of dual shock wave–turbulent boundary layer interactions

Published online by Cambridge University Press:  07 November 2024

Nan Li*
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China International Joint Institute of Artificial Intelligence on Fluid Mechanics, Northwestern Polytechnical University, Xi'an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi'an 710072, PR China
Wenfeng Li
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi'an 710072, PR China
Zhengyin Ye
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China International Joint Institute of Artificial Intelligence on Fluid Mechanics, Northwestern Polytechnical University, Xi'an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi'an 710072, PR China
Weiwei Zhang
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China International Joint Institute of Artificial Intelligence on Fluid Mechanics, Northwestern Polytechnical University, Xi'an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi'an 710072, PR China
*
Email address for correspondence: linan2019@nwpu.edu.cn

Abstract

Supersonic internal flows often exhibit multiple reflected shocks within a limited distance. These shocks can interact with each other in a complex manner due to the characteristics of the shock wave–turbulent boundary layer interaction (STBLI), including flow distortion and the relaxing boundary layer. This study aims to characterise this type of interaction and to clarify its fluid physics. A separated STBLI zone was established either upstream or downstream, and another weaker STBLI was established in the opposing position to serve as a perturbation. Time-resolved measurements were employed to characterise the mean separation and unsteadiness as the two regions approached each other, as well as their relationship. The experimental results indicated that the STBLI could affect the separation and reattachment of the other STBLI through either the decelerated or relaxing boundary layer. Despite a small deflection angle, the incident shock can amplify the low-frequency oscillations in the downstream STBLI region. Additionally, the interaction in the downstream region can be influenced by both low- and high-frequency oscillations associated with the upstream STBLI through a relaxing boundary layer. Despite the limited correlation observed between the low-frequency fluctuations in the downstream region and the boundary layer flow not far upstream, there still exists some degree of correlation between the low-frequency shock motions even when they are widely separated. Both the ‘upstream mechanism’ and ‘downstream mechanism’ have been observed, and the significance of low-frequency dynamics in the separated flow, relative to that of the upstream flow, is closely associated with interaction intensity.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Agostini, L., Larchevéque, L. & Dupont, P. 2015 Mechanism of shock unsteadiness in separated shock/boundary-layer interactions. Phys. Fluids 27 (12), 126103.CrossRefGoogle Scholar
Andreopoulos, J. & Muck, K.C. 1987 Some new aspects of the shock-wave–boundary-layer interaction in compression-ramp flows. J. Fluid Mech. 180, 405428.CrossRefGoogle Scholar
Beresh, S.J., Clemens, N.T. & Dolling, D.S. 2002 Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40 (12), 24122422.CrossRefGoogle Scholar
Beresh, S.J., Henfling, J.F., Spillers, R.W. & Pruett, B.O.M. 2011 Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer. Phys. Fluids 23 (7), 075110.CrossRefGoogle Scholar
Brooks, J., Gupta, A.K., Smith, S. & Marineau, E. 2018 Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers. Exp. Fluids 59 (5), 83.CrossRefGoogle Scholar
Bruce, P.J.K. & Babinsky, H. 2008 Unsteady shock wave dynamics. J. Fluid Mech. 603, 463473.CrossRefGoogle Scholar
Cao, S.B., Hao, J.A., Klioutchnikov, I., Olivier, H. & Wen, C.Y. 2021 Unsteady effects in a hypersonic compression ramp flow with laminar separation. J. Fluid Mech. 912, A3.CrossRefGoogle Scholar
Chandola, G., Huang, X. & Estruch-Samper, D. 2017 Highly separated axisymmetric step shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 828, 236270.CrossRefGoogle Scholar
Chapman, D.R., Kuehn, D.M. & Larson, H.K. 1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Tech. Rep. 1356.Google Scholar
Clemens, N.T. & Narayanaswamy, V. 2009 Shock/turbulent boundary layer interactions: review of recent work on sources of unsteadiness. AIAA Paper 2009-3710.CrossRefGoogle Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191226.CrossRefGoogle Scholar
Debieve, J.F. & Dupont, P. 2009 Dependence between the shock and the separation bubble in a shock wave boundary layer interaction. Shock Waves 19 (6), 499506.CrossRefGoogle Scholar
Debieve, J.F. & Lacharme, J.P. 1986 A shock-wave/free turbulence interaction. In Turbulent Shear-Layer/Shock-Wave Interactions (ed. J. Délery), pp. 393–403. Springer.CrossRefGoogle Scholar
Dolling, D.S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.CrossRefGoogle Scholar
Dupont, P., Haddad, C. & Debieve, J.F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.CrossRefGoogle Scholar
Dupont, P., Piponniau, S., Sidorenko, A. & Debieve, J.F. 2008 Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA J. 46 (6), 13651370.CrossRefGoogle Scholar
Dussauge, J.P. 2009 Compressible turbulence in interactions of supersonic flows. In Turbulence and Interactions (ed. M. Deville, T.H. Le & P. Sagaut), Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 105, pp. 35–54. Springer.CrossRefGoogle Scholar
Dussauge, J.P. & Piponniau, S. 2008 Shock/boundary-layer interactions: possible sources of unsteadiness. J. Fluids Struct. 24 (8), 11661175.CrossRefGoogle Scholar
Erengil, M.E. & Dolling, D.S. 1991 a Correlation of separation shock motion with pressure-fluctuations in the incoming boundary-layer. AIAA J. 29 (11), 18681877.CrossRefGoogle Scholar
Erengil, M.E. & Dolling, D.S. 1991 b Unsteady wave structure near separation in a Mach-5 compression ramp interaction. AIAA J. 29 (5), 728735.CrossRefGoogle Scholar
Estruch-Samper, D. & Chandola, G. 2018 Separated shear layer effect on shock-wave/turbulent-boundary-layer interaction unsteadiness. J. Fluid Mech. 848, 154192.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N.T. & Dolling, D.S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N.T. & Dolling, D.S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.CrossRefGoogle Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12 (9), 14221429.CrossRefGoogle Scholar
Gramann, R.A. & Dolling, D.S. 1990 Detection of turbulent boundary-layer separation using fluctuating wall pressure signals. AIAA J. 28 (6), 10521056.CrossRefGoogle Scholar
Grilli, M., Schmid, P.J., Hickel, S. & Adams, N.A. 2012 Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. J. Fluid Mech. 700, 1628.CrossRefGoogle Scholar
Hadjadj, A. & Dussauge, J.P. 2009 Shock wave boundary layer interaction. Shock Waves 19 (6), 449452.CrossRefGoogle Scholar
Hao, J.A., Cao, S.B., Wen, C.Y. & Olivier, H. 2021 Occurrence of global instability in hypersonic compression corner flow. J. Fluid Mech. 919, A4.CrossRefGoogle Scholar
Helm, C., Martin, M.P. & Dupont, P. 2014 Characterization of the shear layer in a Mach 3 shock/turbulent boundary layer interaction. J. Phys.: Conf. Ser. 506, 012013.Google Scholar
Hildebrand, N., Dwivedi, A., Nichols, J.W., Jovanovic, M.R. & Candler, G.V. 2018 Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92. Phys. Rev. Fluids 3 (1), 013906.CrossRefGoogle Scholar
Huang, X. & Estruch-Samper, D. 2018 Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 856, 797821.CrossRefGoogle Scholar
Humble, R.A., Scarano, F. & van Oudheusden, B.W. 2007 Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp. Fluids 43 (2–3), 173183.CrossRefGoogle Scholar
Humble, R.A., Scarano, F. & van Oudheusden, B.W. 2009 Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 4774.CrossRefGoogle Scholar
Jenquin, C., Johnson, E.C. & Narayanaswamy, V. 2023 Investigations of shock–boundary layer interaction dynamics using high-bandwidth pressure field imaging. J. Fluid Mech. 961, A5.CrossRefGoogle Scholar
Khobragade, N., Unnikrishnan, S. & Kumar, R. 2022 Flow instabilities and impact of ramp-isolator junction on shock–boundary-layer interactions in a supersonic intake. J. Fluid Mech. 953, A30.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Lee, S.S., Lele, S.K. & Moin, P. 1993 Direct numerical-simulation of isotropic turbulence interacting with a weak shock-wave. J. Fluid Mech. 251, 533562.CrossRefGoogle Scholar
Leonard, M.D. & Narayanaswamy, V. 2021 Investigation of shock dynamics in an axisymmetric inlet/isolator with attached boundary layers. J. Fluid Mech. 908, A42.CrossRefGoogle Scholar
Li, N. & Chang, J.T. 2021 Hysteretic behaviors of separation-shock driven by backpressure in isolator with incident shocks. AIAA J. 59 (3), 960971.CrossRefGoogle Scholar
Li, N., Chang, J.T., Xu, K.J., Yu, D.R. & Bao, W. 2021 Instability of shock train behaviour with incident shocks. J. Fluid Mech. 907, A40.CrossRefGoogle Scholar
Murphree, Z.R., Combs, C.S., Yu, W.M., Dolling, D.S. & Clemens, N.T. 2021 Physics of unsteady cylinder-induced shock-wave/transitional boundary-layer interactions. J. Fluid Mech. 918, A39.CrossRefGoogle Scholar
Piponniau, S., Dussauge, J.P., Debieve, J.F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. & Gatski, T.B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $M=2.25$. Phys. Fluids 16 (3), 530545.CrossRefGoogle Scholar
Priebe, S. & Martin, M.P. 2012 Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction. J. Fluid Mech. 699, 149.CrossRefGoogle Scholar
Priebe, S., Tu, J.H., Rowley, C.W. & Martin, M.P. 2016 Low-frequency dynamics in a shock-induced separated flow. J. Fluid Mech. 807, 441477.CrossRefGoogle Scholar
Sartor, F., Mettot, C., Bur, R. & Sipp, D. 2015 Unsteadiness in transonic shock-wave/boundary-layer interactions: experimental investigation and global stability analysis. J. Fluid Mech. 781, 550577.CrossRefGoogle Scholar
Sidharth, G.S., Dwivedi, A., Candler, G.V & Nichols, J.W. 2018 Onset of three-dimensionality in supersonic flow over a slender double wedge. Phys. Rev. Fluids 3 (9), 093901.Google Scholar
Souverein, L.J., Bakker, P.G. & Dupont, P. 2013 A scaling analysis for turbulent shock-wave/boundary-layer interactions. J. Fluid Mech. 714, 505535.CrossRefGoogle Scholar
Souverein, L.J., Dupont, P., Debieve, J.F., Dussauge, J.P., van Oudheusden, B.W. & Scarano, F. 2010 Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations. AIAA J. 48 (7), 14801493.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319–352.Google Scholar
Thielicke, W. & Sonntag, R. 2021 Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 9 (1), 12.CrossRefGoogle Scholar
Thomas, F.O., Putnam, C.M. & Chu, H.C. 1994 On the mechanism of unsteady shock oscillation in shock-wave turbulent boundary-layer interactions. Exp. Fluids 18 (1–2), 6981.CrossRefGoogle Scholar
Tichenor, N.R., Humble, R.A. & Bowersox, R. 2012 Reynolds stresses in a hypersonic boundary layer with streamline curvature-driven favorable pressure gradients. AIAA Paper 2012-3059.CrossRefGoogle Scholar
Touber, E. & Sandham, N.D. 2009 Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23 (2), 79107.CrossRefGoogle Scholar
Touber, E. & Sandham, N.D. 2011 Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Walz, A. 1969 Boundary Layers of Flow and Temperature. MIT Press.Google Scholar
Wang, B., Sandham, N.D., Hu, Z.W. & Liu, W.D. 2015 Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects. J. Fluid Mech. 767, 526561.CrossRefGoogle Scholar
Wu, M.W. & Martin, M.P. 2008 Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.CrossRefGoogle Scholar
Xue, L.S., Jiao, Y., Wang, C.P. & Cheng, K.M. 2023 Pressure plateau of separation induced by shock impingement in a Mach 5 flow. J. Fluid Mech. 972, R1.CrossRefGoogle Scholar
Yang, J., Kubota, T. & Zukoski, E.E. 1993 Applications of shock-induced mixing to supersonic combustion. AIAA J. 31 (5), 854862.CrossRefGoogle Scholar