Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T12:57:38.136Z Has data issue: false hasContentIssue false

On the lifetimes of evaporating droplets

Published online by Cambridge University Press:  14 March 2014

J. M. Stauber
Affiliation:
Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK
S. K. Wilson*
Affiliation:
Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK
B. R. Duffy
Affiliation:
Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK
K. Sefiane
Affiliation:
School of Engineering, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
*
Email address for correspondence: s.k.wilson@strath.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The complete description of the lifetime of a droplet on a solid substrate evaporating in a ‘stick–slide’ mode is obtained. The unexpectedly subtle relationship between the lifetime of such a droplet and the lifetimes of initially identical droplets evaporating in the extreme modes (namely the constant contact radius and constant contact angle modes) is described and summarised in an appropriate master diagram. In particular, it is shown that the lifetime of a droplet is not, in general, constrained by the lifetimes of the extreme modes.

Type
Rapids
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Copyright
© 2014 Cambridge University Press

References

Bourgès-Monnier, C. & Shanahan, M. E. R. 1995 Influence of evaporation on contact angle. Langmuir 11, 28202829.CrossRefGoogle Scholar
Cazabat, A.-M. & Guéna, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6, 25912612.Google Scholar
Dash, S. & Garimella, S. V. 2013 Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis. Langmuir 29, 1078510795.Google Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.Google Scholar
Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K. 2009 The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329351.CrossRefGoogle Scholar
Erbil, H. Y. 2012 Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv. Colloid Interface Sci. 170, 6786.CrossRefGoogle ScholarPubMed
Fukai, J., Ishizuka, H., Sakai, Y., Kaneda, M., Morita, M. & Takahara, A. 2006 Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces. Intl J. Heat Mass Transfer 49, 35613567.Google Scholar
Gelderblom, H., Marín, Á. G., Nair, H., van Houselt, A., Lefferts, L., Snoeijer, J. H. & Lohse, D. 2011 How water droplets evaporate on a superhydrophobic substrate. Phys. Rev. E 83, 026306.Google Scholar
Hu, H. & Larson, R. G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106, 13341344.Google Scholar
Kulinich, S. A. & Farzaneh, M. 2009 Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces. Appl. Surf. Sci. 255, 40564060.Google Scholar
Li, G., Flores, S. M., Vavilala, C., Schmittel, M. & Graf, K. 2009 Evaporation dynamics of microdroplets on self-assembled monolayers and dialkyl disulfides. Langmuir 25, 1343813447.Google Scholar
Lim, T., Yang, J., Lee, S., Chung, J. & Hong, D. 2012 Deposit pattern of inkjet printed pico-liter droplet. Intl J. Precis. Engng Manuf. 13, 827833.CrossRefGoogle Scholar
McHale, G., Aqil, S., Shirtcliffe, N. J., Newton, M. I. & Erbil, H. Y. 2005 Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 21, 1105311060.Google Scholar
Nguyen, T. A. H. & Nguyen, A. V. 2012a On the lifetime of evaporating sessile droplets. Langmuir 28, 19241930.Google Scholar
Nguyen, T. A. H. & Nguyen, A. V. 2012b Increased evaporation kinetics of sessile droplets by using nanoparticles. Langmuir 28, 1672516728.Google Scholar
Nguyen, T. A. H., Nguyen, A. V., Hampton, M. A., Xu, Z. P., Huang, L. & Rudolph, V. 2012 Theoretical and experimental analysis of droplet evaporation on solid surfaces. Chem. Engng Sci. 69, 522529.Google Scholar
Picknett, R. G. & Bexon, R. 1977 The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61, 336350.Google Scholar
Popov, Y. O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313.Google Scholar
Shanahan, M. E. R. 1995 Simple theory of ‘stick–slip’ wetting hysteresis. Langmuir 11, 10411043.Google Scholar
Shanahan, M. E. R., Sefiane, K. & Moffat, J. R. 2011 Dependence of volatile droplet lifetime on the hydrophobicity of the substrate. Langmuir 27, 45724577.Google Scholar
Song, H., Lee, Y., Jin, S., Kim, H.-Y. & Yoo, J. Y. 2011 Prediction of sessile drop evaporation considering surface wettability. Microelectron. Engng 88, 32493255.Google Scholar
Stauber, J. M., Wilson, S. K., Duffy, B. R. & Sefiane, K. 2013 Comment on “Increased evaporation kinetics of sessile droplets by using nanoparticles”. Langmuir 29, 1232812329.Google Scholar
Talbot, E. L., Berson, A., Brown, P. S. & Bain, C. D. 2012 Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities. Phys. Rev. E 85, 061604.Google Scholar
Uno, K., Hayashi, K., Hayashi, T., Ito, K. & Kitano, H. 1998 Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces. Colloid Polym. Sci. 276, 810815.Google Scholar
Yu, Y.-S., Wang, Z. & Zhao, Y.-P. 2012 Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces. J. Colloid Interface Sci. 365, 254259.Google Scholar