Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:03:31.434Z Has data issue: false hasContentIssue false

On the flow of buoyant fluid injected into a confined, inclined aquifer

Published online by Cambridge University Press:  15 February 2011

IAIN GUNN
Affiliation:
BP Institute for Multiphase Flow, University of Cambridge, Madingley Road, Cambridge CB3 0EZ, UK
ANDREW W. WOODS*
Affiliation:
BP Institute for Multiphase Flow, University of Cambridge, Madingley Road, Cambridge CB3 0EZ, UK
*
Email address for correspondence: andy@bpi.cam.ac.uk

Abstract

We study the dispersal of a plume of incompressible buoyant fluid injected into a confined sloping aquifer which has an outflow at a single fault which may be up-dip (up-slope) or down-dip (down-slope) from the point of injection. We develop a long-time asymptotic solution for the motion of the injected fluid. We show that for the case in which the outflow fault is up-dip from the point of injection, there is a critical injection rate above which the injected fluid floods the full depth of the aquifer, and we show that for the case in which the outflow fault is down-dip from the point of injection, there is a critical injection rate below which all injected fluid initially flows up-dip. Our analysis leads to expressions for the lateral extent of the injected fluid as a function of time, and we consider the implications of the model for the dispersal of supercritical carbon dioxide injected into deep saline aquifers. The work also indicates that the geometry of the system may have a significant effect on (i) the total volume of carbon dioxide which it is possible to sequester in a faulted aquifer and (ii) the interpretation of the dispersed position of any injected tracers.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bachu, S. & Adams, J. 2003 Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manage. 44, 31513175.CrossRefGoogle Scholar
Barenblatt, G. I. 1996 Dimensional Analysis, Self-Similarity and Intermediate Asymptotics. Cambridge University Press.CrossRefGoogle Scholar
Bear, J. 1988 Dynamics of Fluids in Porous Media. Dover.Google Scholar
Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M. & Lyle, S. 2007 Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet. Sci. Lett. 255, 164176.CrossRefGoogle Scholar
Cavanagh, A. & Ringrose, P. 2010 In Salah high-resolution heterogeneous simulations of CO2 storage. Search and Discovery, Article No. 80092.Google Scholar
Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S. E., Jin, M., Krug, S., Labregere, D., Beni, A. N., Pawar, R. J., Sbai, A., Thomas, S. G., Trenty, L. & Wei, L. 2009 A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13, 409434.CrossRefGoogle Scholar
Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of CO2 in a layered permeable rock. J. Fluid Mech. 618, 349359.CrossRefGoogle Scholar
Gasda, S. E., Nordbotten, J. M. & Celia, M. A. 2009 Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput. Geosci. 13, 469481.CrossRefGoogle Scholar
Hesse, M. A., Orr, F. M. Jr. & Tchelepi, H. A. 2008 Gravity currents with residual trapping. J. Fluid Mech. 611, 3560.CrossRefGoogle Scholar
Hesse, M. A., Tchelepi, H. A. & Orr, F. M. Jr. 2006 Scaling analysis of the migration of CO2 in aquifers. In the SPE Annual Technical Conference and Exhibition, San Antonio, TX.Google Scholar
Huppert, H. E. & Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.CrossRefGoogle Scholar
IPCC 2005 IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press.Google Scholar
Juanes, R. E., Spiteri, J., Orr, F. M. & Blunt, M. J. 2006 Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42, W12418.CrossRefGoogle Scholar
Lyle, S., Huppert, H. E. & Hallworth, M. 2005 Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293302.CrossRefGoogle Scholar
Mitchell, V. & Woods, A. W. 2006 Gravity driven flow in confined aquifers. J. Fluid Mech. 566, 345355.CrossRefGoogle Scholar
Neufeld, J. A. & Huppert, H. E. 2009 Modelling carbon dioxide sequestration in layered strata. J. Fluid Mech. 625, 353370.CrossRefGoogle Scholar
Neufeld, J. A., Vella, D. & Huppert, H. E. 2009 The effect of a fissure on storage in a porous medium. J. Fluid Mech. 639, 239259.CrossRefGoogle Scholar
Nordbotten, J. M. & Celia, M. A. 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307327.CrossRefGoogle Scholar
Nordbotten, J. M., Celia, M. A. & Bachu, S. 2004 Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40, W04204.CrossRefGoogle Scholar
Nordbotten, J. M., Celia, M. A., Bachu, S. & Dahle, H. K. 2005 Semianalytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39, 602611.CrossRefGoogle ScholarPubMed
Nordbotten, J. M., Kavetski, D., Celia, M. A. & Bachu, S. 2009 Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43, 739749.CrossRefGoogle ScholarPubMed
Obi, E.-O. I. & Blunt, M. J. 2006 Streamline-based simulation of carbon dioxide storage in a North Sea aquifer. Water Resour. Res. 42, W03414.CrossRefGoogle Scholar
Phillips, O. M. 1991 Flow and Reactions in Permeable Rocks. Cambridge University Press.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992 Numerical Recipes in Fortran 77. Cambridge University Press.Google Scholar
Pritchard, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech. 584, 415431.CrossRefGoogle Scholar
Pritchard, D., Woods, A. W. & Hogg, A. J. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.CrossRefGoogle Scholar
Pruess, K., Xu, T., Apps, J. & Garcia, J. 2003 Numerical modeling of aquifer disposal of CO2. SPE J. 8, 4960.CrossRefGoogle Scholar
Vella, D. & Huppert, H. E. 2006 Gravity currents in a porous medium at an inclined plane. J. Fluid Mech. 555, 353362.CrossRefGoogle Scholar
Woods, A. W. & Farcas, A. 2009 On the leakage of gravity currents advancing through sloping layered permeable rock. J. Fluid Mech. 618, 361379.CrossRefGoogle Scholar
Woods, A. W. & Norris, S. 2010 On the role of caprock and fracture zones in dispersing gas plumes in the subsurface. Water Resour. Res. 46, W08522.CrossRefGoogle Scholar