Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T03:46:38.219Z Has data issue: false hasContentIssue false

On the dynamics of a free surface of an ideal fluid in a bounded domain in the presence of surface tension

Published online by Cambridge University Press:  07 December 2018

Sergey A. Dyachenko*
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Email address for correspondence: sdyachen@math.uiuc.edu

Abstract

We derive a set of equations in conformal variables that describe a potential flow of an ideal two-dimensional inviscid fluid with free surface in a bounded domain. This formulation is free of numerical instabilities present in the equations for the surface elevation and potential derived in Dyachenko et al. (Plasma Phys. Rep. vol. 22 (10), 1996, pp. 829–840) with some restrictions on analyticity relieved, which allows to treat a finite volume of fluid enclosed by a free-moving boundary. We illustrate with a comparison of numerical simulations of the Dirichlet ellipse, an exact solution for a zero surface tension fluid. We demonstrate how the oscillations of the free surface of a unit disc droplet may lead to breaking of one droplet into two when surface tension is present.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Constantin, A. & Strauss, W. 2004 Exact steady periodic water waves with vorticity. Commun. Pure Appl. Maths 57 (4), 481527.Google Scholar
Constantin, A., Strauss, W. & Vărvărucă, E. 2016 Global bifurcation of steady gravity water waves with critical layers. Acta Mathematica 217 (2), 195262.Google Scholar
Crapper, G. D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech. 2, 532540.Google Scholar
Da Silva, A. F. T. & Peregrine, D. H. 1988 Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281302.Google Scholar
Dirichlet, G. L. 1860 Untersuchungen über ein Problem der Hydrodynamik. Abh. Kön. Gest. Wiss. Göttingen 8, 342.Google Scholar
Dyachenko, A. I. 2001 On the dynamics of an ideal fluid with a free surface. Dokl. Math. 63, 115117.Google Scholar
Dyachenko, A. I., Kuznetsov, E. A., Spector, M. D. & Zakharov, V. E. 1996a Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221 (1), 7379.Google Scholar
Dyachenko, A. I., Zakharov, V. E. & Kuznetsov, E. A. 1996b Nonlinear dynamics of the free surface of an ideal fluid. Plasma Phys. Rep. 22 (10), 829840.Google Scholar
Dyachenko, S. & Newell, A. C. 2016 Whitecapping. Stud. Appl. Maths 137 (2), 199213.Google Scholar
Dyachenko, S. A. & Mikyoung Hur, V.2018 Stokes waves with constant vorticity. Part I. Numerical computation. Preprint, arXiv:1802.07671.Google Scholar
Frigo, M. & Johnson, S. G. 2005 The design and implementation of fftw3. Proc. IEEE 93 (2), 216231.Google Scholar
Hale, N. & Tee, T. W. 2009 Conformal maps to multiply slit domains and applications. SIAM J. Sci. Comput. 31 (4), 31953215.Google Scholar
Longuet-Higgins, M. S. 1972 A class of exact, time-dependent, free-surface flows. J. Fluid Mech. 55 (3), 529543.Google Scholar
Lushnikov, P. M., Dyachenko, S. A. & Silantyev, D. A. 2017 New conformal mapping for adaptive resolving of the complex singularities of Stokes wave. Proc. R. Soc. Lond. A 473, 20170198.Google Scholar
Ribeiro, R., Milewski, P. A. & Nachbin, A. 2017 Flow structure beneath rotational water waves with stagnation points. J. Fluid Mech. 812, 792814.Google Scholar
Ruban, V. P. 2004 Water waves over a strongly undulating bottom. Phys. Rev. E 70, 066302.Google Scholar
Stokes, G. G. 1880 Mathematical and Physical Papers, vol. 1. Cambridge University Press.Google Scholar
Tanveer, S. 1993 Singularities in the classical rayleigh-taylor flow: formation and subsequent motion. Proc. R. Soc. Lond. A 441 (1913), 501525.Google Scholar
Titchmarsh, E. C. 1986 Introduction to the Theory of Fourier Integrals, 3rd edn. Chelsea Publishing Co.Google Scholar
Turitsyn, K. S., Lai, L. & Zhang, W. W. 2009 Asymmetric disconnection of an underwater air bubble: Persistent neck vibrations evolve into a smooth contact. Phys. Rev. Lett. 103, 124501.Google Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.Google Scholar
Zakharov, V. E., Dyachenko, A. I. & Vasilyev, O. A. 2002 New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech. (B/Fluids) 21 (3), 283291.Google Scholar