Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:42:11.983Z Has data issue: false hasContentIssue false

On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid

Published online by Cambridge University Press:  01 February 2008

KEVIN G. LAMB*
Affiliation:
Department of Applied Mathematics, University of Waterloo, Waterloo, Canada

Abstract

Two methods for calculating the available potential energy (APE) of an isolated feature in a density-stratified fluid, such as an internal solitary wave or an eddy, are compared. The first formulation calculates the APE by integrating the perturbation potential energy density Ew. The second uses an available potential energy density Ea. Both formulations are based on the reference density obtained by adiabatically rearranging the density field to a state of minimum energy. It is shown, under more general conditions than used previously, that (i) the integrals of Ew and Ea over a finite domain are identical; and (ii) that for an isolated feature in an unbounded domain, the far-field density can be used as the reference density if Ea is used to find the APE. This is not the case when Ew is used, hence use of the available potential energy density formulation is simpler in this situation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, D. G. 1981 A note on potential energy density in a stratified compressible fluid. J. Fluid Mech. 107, 227236.CrossRefGoogle Scholar
Arneborg, L. 2002 Mixing efficiences in patchy turbulence. J. Phys. Oceanogr. 32, 14961506.2.0.CO;2>CrossRefGoogle Scholar
Benzohra, M. & Millot, C. 1995 Hydrodynamics of an open sea algerian eddy. Deep-Sea Res. I 42, 18311847.CrossRefGoogle Scholar
Bogucki, D. & Garrett, C. 1993 A simple model for the shear-induced decay of an internal solitary wave. J. Phys. Oceanogr. 23, 17671776.2.0.CO;2>CrossRefGoogle Scholar
Hebert, D. 1988 The available potential energy of an isolated feature. J. Geophys. Res. 93, 556564.CrossRefGoogle Scholar
Henning, C. C. & Vallis, G. K. 2004 The effects of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr. 34, 24282443.CrossRefGoogle Scholar
Holliday, D. & McIntyre, M. E. 1981 On potential energy density in an incompressible stratified fluid. J. Fluid Mech. 107, 221225.CrossRefGoogle Scholar
Huang, R. X. 2005 Available potential energy in the world's oceans. J. Marine Res. 63, 141158.CrossRefGoogle Scholar
Klymak, J. M. & Moum, J. N. 2003 Internal solitary waves of elevation advancing on a shoaling shelf. Geophys. Res. Lett. 30 (20), 2045, doi:10.1029/2006GL025932.CrossRefGoogle Scholar
Klymak, J. M., Pinkel, R., Liu, C.-T., Liu, A. K. & David, L. 2006 Prototypical solitons in the south china sea. Geophys. Res. Lett. 33, L11607, doi:10.1029/2006GL025932.CrossRefGoogle Scholar
Lamb, K. G. 2007 Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Cont. Shelf Res. 27, 12081232.CrossRefGoogle Scholar
Legg, S. & McWilliams, J. C. 2001 Convective modifications of a geostrophic eddy field. J. Phys. Oceanogr. 31, 874891.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7, 157167.CrossRefGoogle Scholar
Moum, J. N., Klymak, J. M., Nash, J. D., Perlin, A. & Smyth, W. D. 2007 Energy transport by nonlinear internal waves. J. Phys. Oceanogr. 37, 19681988.CrossRefGoogle Scholar
Prater, M. D. & Sanford, T. B. 1994 A meddy off cape st. vincent. part i: Description. J. Phys. Oceanogr. 24, 15721586.2.0.CO;2>CrossRefGoogle Scholar
Reid, R. O., Elliot, B. E. & Olson, D. B. 1981 Available potential energy: a clarification. J. Phys. Oceanogr. 10, 90104.Google Scholar
Scotti, A., Beardsley, R. & Butman, B. 2006 On the interpretation of energy and energy fluxes of nonlinear internal waves: an example from massachusetts bay. J. Fluid Mech. 561, 103112.CrossRefGoogle Scholar
Shepherd, T. 1993 A unified theory of available potential energy. Atmos. Oceans 31, 126.CrossRefGoogle Scholar
Venayagamoorthy, S. K. & Fringer, O. B. 2005 Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves. Geophys. Res. Lett. 32, L15603, doi:10.1029/2005GL023432.CrossRefGoogle Scholar
Winters, K. B., Lombard, P. N., Riley, J. J. & D'Asaro, E. A. 1995 Available potential energy and mixing in stratified fluids. J. Fluid Mech. 289, 115128.CrossRefGoogle Scholar