Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T23:13:17.667Z Has data issue: false hasContentIssue false

On moderate injection into a separated supersonic boundary layer, with reattachment

Published online by Cambridge University Press:  19 April 2006

C. Diver
Affiliation:
Department of Mathematics, University College London
K. Stewartson
Affiliation:
Department of Mathematics, University College London

Abstract

We consider the problem of mass injection from a flat plate into uniform supersonic flow when the boundary layer is blown off at the leading edge to form a thin free shear layer separating the inviscid injectant layer from the external flow. The injection is moderate, i.e. of the same order of magnitude as the velocity of entrainment into the base of the shear layer. For simplicity, we consider similarity blowing, proportional to x*−½, where x* is measured along the plate from the leading edge. We find that the solution in the injectant region, based on initial conditions at the leading edge, is non-unique unless fixed by downstream conditions. When injection is cut off at a finite distance along the plate, this enables us to find a solution to the problem in which the shear layer eventually reattaches to the plate and for which the pressure and the height of the injectant layer are continuous at cut-off. The study provides a partial connexion between the earlier studies of weak blowing in which the boundary layer is not blown off and of strong blowing for which the boundary layer is blown off and the entrainment into the shear layer is negligible.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amr, A. & Kassoy, D. R. 1973 Phys. Fluids 16, 15791586.
Amr, A. & Kassoy, D. R. 1976 Phys. Fluids 19, 13121318.
Brown, S. N. & Stewartson, K. 1969 Ann. Rev. Fluid Mech. 1, 4572.
Burggraf, O. R. 1970 U.S. Air Force Aerospace Res. Lab. Rep. ARL 70–0275.
Burggraf, O. R. 1973 Proc. 3rd Int. Conf. Num. Methods in Fluid Mech., Lecture Notes in Physics, vol. 18. Springer.
Burggraf, O. R. 1975 AGARD Symp. Separation, Göttingen, paper 10.
Catherall, D., Stewartson, K. & Williams, P. G. 1965 Proc. Roy. Soc. A 284, 270296.
Cebeci, T. & Bradshaw, P. 1977 Momentum Transfer in Boundary Layers. Hemisphere, McGraw-Hill.
Chang, C. J. & Messiter, A. F. 1968 Univ. Michigan Willow Run Lab. Rep. no. 8430-2-T.
Cole, J. D. & Aroesty, J. 1968 Int. J. Heat Mass Transfer 11, 11671183.
Diver, C. 1978 Ph.D. thesis, University College London (in preparation).
Emmons, H. W. & Leigh, D. C. 1953 Aero. Res. Counc. Current Paper no. 157.
Gadd, G. E., Jones, C. W. & Watson, E. J. 1963 In Laminar Boundary Layers (ed. L. Rosenhead), chap. VI. Oxford University Press.
Iglisch, R. & Gröhne, D. 1945 Ber. Inst. Math. Tech. Hochsch., Braunschweig, no. 1–45.
Kassoy, D. R. 1974 J. Fluid Mech. 62, 145161.
Keller, H. B. & Cebeci, T. 1971 2nd Int. Conf. Num. Math. Fluid Dyn., Berkeley, p. 92. Springer.
Klemp, J. B. & Acrivos, A. 1972 J. Fluid Mech. 51, 337356.
Messiter, A. F., Hough, G. R. & Feo, A. 1973 J. Fluid Mech. 60, 605624.
Pretsch, J. 1944 Unter Mitt. Deut. Luftfahrt Rep. no. 3091.
Schlichting, H. & Bussman, K. 1943 Schr. Dtsch. Akad. Luftfahr, no. 7B.
Smith, F. T. & Stewartson, K. 1973a J. Fluid Mech. 58, 143159.
Smith, F. T. & Stewartson, K. 1973b Proc. Roy. Soc. A 332, 122.
Stewartson, K. 1974a Adv. Appl. Math. 14, 146239.
Stewartson, K. 1974b J. Fluid Mech. 62, 289308.
Stewartson, K. & Williams, P. G. 1969 Proc. Roy. Soc. A 312, 181206.
Werle, M. J. 1977 Dept. Aerospace Engng Appl. Math. Univ. Cincinnati, Rep. AFL 77–10–35.