Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T02:55:51.815Z Has data issue: false hasContentIssue false

On kurtosis and extreme waves in crossing directional seas: a laboratory experiment

Published online by Cambridge University Press:  08 August 2019

Jamie F. Luxmoore
Affiliation:
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
Suzana Ilic*
Affiliation:
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
Nobuhito Mori
Affiliation:
Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji 611-0011, Japan
*
Email address for correspondence: s.ilic@lancaster.ac.uk

Abstract

We examine the statistical properties of extreme and rogue wave activity in crossing directional seas, to constrain the probabilistic distributions of wave heights and wave crests in complex sea states; such crossing seas alter the statistical structure of surface waves and are known to have been involved in several marine accidents. Further, we examine the relationship between the kurtosis as an indicator of nonlinearity in the spectrum and the directionality and crossing angles of the sea-state components. Experimental tests of two-component directionally spread irregular waves with varying frequency, directional spreading and component crossing angles were carried out at the Ocean Basin Laboratory in Trondheim, Norway. The results from the experiments show that wave heights are well described by a first-order (linear) statistical distribution, while for the wave crest heights several cases exceed a second-order distribution. The number of rogue waves is relatively low overall, which agrees with previous findings in directionally spread seas. The kurtosis and wave and crest height exceedance probabilities were more affected by varying the directional spreading of the components than by varying the crossing angles between components; reducing the component directional spreading increases the kurtosis and increases the exceedance probabilities. The kurtosis can be estimated quite well for two-component seas from the directional spreading using an empirical relationship based on the two-dimensional Benjamin–Feir index when the effects of bound modes are included. This result may allow forecasting of the probability of extreme waves from the directional spreading in complex sea states.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wavetrains in deep water. Part 1. J. Fluid Mech. 27, 417430.Google Scholar
Bitner-Gregersen, E. M. & Toffoli, A. 2014 Occurrence of rogue sea states and consequences for marine structures. Ocean Dyn. 64 (10), 14571468.Google Scholar
Boukhanovsky, A. V., Lopatoukhin, L. J. & Guedes Soares, C. 2007 Spectral wave climate of the North Sea. Appl. Ocean Res. 29 (3), 146154.Google Scholar
Brennan, J., Dudley, J. M. & Dias, F. 2018 Extreme waves in crossing sea states. Intl J. Ocean Coast. Engng 1 (1), 1850001.Google Scholar
Buchner, B., Forristall, G., Ewans, K. C., Christou, M. & Henning, J. 2011 New insights in extreme crest height distributions: a summary of the CresT JIP. In Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering, pp. 589604. American Society of Mechanical Engineers.Google Scholar
Dean, R. 1990 Freak waves: a possible explanation. In Water Wave Kinematics (ed. Trum, A. & Gudmestad, O.), NATO ASI Series, vol. 178, pp. 609612. Springer.Google Scholar
Dysthe, K., Krogstad, H. E. & Müller, P. 2008 Oceanic rogue waves. Annu. Rev. Fluid Mech. 40 (1), 287310.Google Scholar
Fedele, F. 2008 Rogue waves in oceanic turbulence. Physica D 237, 21272131.Google Scholar
Fedele, F., Brennan, J., Ponce De León, S., Dudley, J. & Dias, F. 2016 Real world ocean rogue waves explained without the modulational instability. Sci. Rep. 6, 27715.Google Scholar
Fedele, F. & Tayfun, M. A. 2009 On nonlinear wave groups and crest statistics. J. Fluid Mech. 620, 221239.Google Scholar
Forristall, G. Z. 1978 On the statistical distribution of wave heights in a storm. J. Geophys. Res. 83 (C5), 23532358.Google Scholar
Forristall, G. Z. 2000 Wave crest distributions: observations and second-order theory. J. Phys. Oceanogr. 30 (8), 19311943.Google Scholar
Frigaard, P., Helm-Pettersen, J., Klopman, G., Stansberg, C. T., Benoit, M., Briggs, M. J., Miles, M., Santas, J., Schäffer, H. A. & Hawkes, P. J. 1997 IAHR list of sea state parameters. In Proceedings of the 27th IAHR Congress, Seminar: Multi-Directional Waves and Their Interaction with Structures, pp. 1519. Canadian Government Publishing.Google Scholar
Gibson, R. S. & Swan, C. 2007 The evolution of large ocean waves: the role of local and rapid spectral changes. Proc. R. Soc. Lond. A 463 (2077), 2148.Google Scholar
Gramstad, O., Bitner-Gregersen, E., Trulsen, K. & Nieto Borge, J. C. 2018 Modulational instability and rogue waves in crossing sea states. J. Phys. Oceanogr. 48 (6), 13171331.Google Scholar
Gramstad, O. & Trulsen, K. 2007 Influence of crest and group length on the occurrence of freak waves. J. Fluid Mech. 582, 463472.Google Scholar
Gramstad, O. & Trulsen, K. 2010 Can swell increase the number of freak waves in a wind sea? J. Fluid Mech. 650, 5779.Google Scholar
Grönlund, A., Eliasson, B. & Marklund, M. 2009 Evolution of rogue waves in interacting wave systems. Europhys. Lett. 86 (2), 24001.Google Scholar
Isobe, M., Kondo, K. & Horikawa, K. 1984 Extension of MLM for estimating directional wave spectrum. In Proceedings Symposium on Description and Modelling of Directional Seas, pp. A-6-1A-6-15.Google Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4), 863884.Google Scholar
Johnson, D.2012 DIWASP, a directional wave spectra toolbox for MATLAB®: User Manual. Research Report WP-1601-DJ (V1.1), Centre for Water Research, University of Western Australia.Google Scholar
Kharif, C. & Pelinovsky, E. 2003 Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. (B/Fluids) 22 (6), 603634.Google Scholar
Longuet-Higgins, M., Cartwright, D. E. & Smith, N. D. 1963 Observations of the directional spectrum of sea waves using the motions of a floating buoy. In Ocean Wave Spectra, pp. 111136. Prentice-Hall.Google Scholar
Longuet-Higgins, M. S. 1980 On the distribution of the heights of sea waves: some effects of nonlinearity and finite band width. J. Geophys. Res. 85 (C3), 15191523.Google Scholar
Mcallister, M. L., Draycott, S., Adcock, T. A. A., Taylor, P. H. & van den Bremer, T. S. 2019 Laboratory recreation of the Draupner wave and the role of breaking in crossing seas. J. Fluid Mech. 860, 767786.Google Scholar
Mori, N. 2012 Freak waves under typhoon conditions. J. Geophys. Res. 117 (C00J07), 12.Google Scholar
Mori, N. & Janssen, P. A. E. M. 2006 On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr. 36 (7), 14711483.Google Scholar
Mori, N., Onorato, M. & Janssen, P. A. E. M. 2011 On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr. 41 (8), 14841497.Google Scholar
Onorato, M., Osborne, A. R. & Serio, M. 2002 Extreme wave events in directional, random oceanic sea states. Phys. Fluids 14 (4), 2528.Google Scholar
Onorato, M., Osborne, A. R. & Serio, M. 2006 Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys. Rev. Lett. 96 (1), 014503.Google Scholar
Onorato, M., Proment, D. & Toffoli, A. 2010 Freak waves in crossing seas. Eur. Phys. J. Spec. Top. 185 (1), 4555.Google Scholar
Onorato, M. et al. 2009 Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin. J. Fluid Mech. 627, 235257.Google Scholar
Petrova, P. G. & Guedes Soares, C. 2009 Probability distributions of wave heights in bimodal seas in an offshore basin. Appl. Ocean Res. 31 (2), 90100.Google Scholar
Sabatino, A. D. & Serio, M. 2015 Experimental investigation on statistical properties of wave heights and crests in crossing sea conditions. Ocean Dyn. 65 (5), 707720.Google Scholar
Semedo, A., Sušelj, K., Rutgersson, A. & Sterl, A. 2011 A global view on the wind sea and swell climate and variability from ERA-40. J. Clim. 24 (5), 14611479.Google Scholar
Shemer, L. & Sergeeva, A. 2009 An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield. J. Geophys. Res. 114 (C01015).Google Scholar
Shukla, P. K., Kourakis, I., Eliasson, B., Marklund, M. & Stenflo, L. 2006 Instability and evolution of nonlinearly interacting water waves. Phys. Rev. Lett. 97 (9), 094501.Google Scholar
Srokosz, M. A. & Longuet-Higgins, M. S. 1986 On the skewness of sea-surface elevation. J. Fluid Mech. 164, 487497.Google Scholar
Stansberg, C. T. 1994 Effects from directionality and spectral bandwidth on non-linear spatial modulations of deep-water surface gravity wave trains. In Proceedings of the 24th International Conference on Coastal Engineering, Kobe, Japan, vol. 1, pp. 579593. American Society of Civil Engineers.Google Scholar
Støle-Hentschel, S., Trulsen, K., Rye, L. B. & Raustøl, A. 2018 Extreme wave statistics of counter-propagating, irregular, long-crested sea states. Phys. Fluids 30 (6), (067102).Google Scholar
Tayfun, M. A. 1980 Narrow-band nonlinear sea waves. J. Geophys. Res. 85 (C3), 15481552.Google Scholar
Toffoli, A., Bitner-Gregersen, E. M., Osborne, A. R., Serio, M., Monbaliu, J. & Onorato, M. 2011 Extreme waves in random crossing seas: laboratory experiments and numerical simulations. Geophys. Res. Lett. 38 (6), (L06605).Google Scholar
Toffoli, A., Gramstad, O., Trulsen, K., Monbaliu, J., Bitner-Gregersen, E. M. & Onorato, M. 2010a Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. J. Fluid Mech. 664, 313336.Google Scholar
Toffoli, A., Lefevre, J. M., Bitner-Gregersen, E. & Monbaliu, J. 2005 Towards the identification of warning criteria: analysis of a ship accident database. Appl. Ocean Res. 27 (6), 281291.Google Scholar
Toffoli, A., Onorato, M., Bitner-Gregersen, E. M. & Monbaliu, J. 2010b Development of a bimodal structure in ocean wave spectra. J. Geophys. Res. 115, (C03006).Google Scholar
Toffoli, A., Fernandez, L., Monbaliu, J., Benoit, M., Gagnaire-Renou, E., Lefevre, J. M., Cavaleri, L., Proment, D., Pakozdi, C., Stansberg, C. T. et al. 2013 Experimental evidence of the modulation of a plane wave to oblique perturbations and generation of rogue waves in finite water depth. Phys. Fluids 25 (9), 091701.Google Scholar
Trulsen, K., Nieto Borge, J. C., Gramstad, O., Aouf, L. & Lefèvre, J. M. 2015 Crossing sea state and rogue wave probability during the Prestige accident. J. Geophys. Res. Ocean. 120 (10), 71137136.Google Scholar
Waseda, T., Kinoshita, T. & Tamura, H. 2009 Evolution of a random directional wave and freak wave occurrence. J. Phys. Oceanogr. 39 (3), 621639.Google Scholar
Xiao, W., Liu, Y., Wu, G. & Yue, D. 2013 Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J. Fluid Mech. 720, 357392.Google Scholar