Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T02:34:52.506Z Has data issue: false hasContentIssue false

On indirect noise in multicomponent nozzle flows

Published online by Cambridge University Press:  12 September 2017

Luca Magri*
Affiliation:
University of Cambridge, Department of Engineering, Cambridge CB2 1PZ, UK
*
Email address for correspondence: lm547@cam.ac.uk

Abstract

A one-dimensional, unsteady nozzle flow is modelled to identify the sources of indirect noise in multicomponent gases. First, from non-equilibrium thermodynamics relations, it is shown that a compositional inhomogeneity advected in an accelerating flow is a source of sound induced by inhomogeneities in the mixture (i) chemical potentials and (ii) specific heat capacities. Second, it is shown that the acoustic, entropy and compositional linear perturbations evolve independently from each other and they become coupled through mean-flow gradients and/or at the boundaries. Third, the equations are cast in invariant formulation and a mathematical solution is found by asymptotic expansion of path-ordered integrals with an infinite radius of convergence. Finally, the transfer functions are calculated for a supersonic nozzle with finite spatial extent perturbed by a methane–air compositional inhomogeneity. The proposed framework will help identify and quantify the sources of sound in nozzles with relevance, for example, to aeronautical gas turbines.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bake, F., Richter, C., Mühlbauer, C., Kings, N., Röhle, I., Thiele, F. & Noll, B. 2009 The entropy wave generator (EWG): a reference case on entropy noise. J. Sound Vib. 326, 574598.Google Scholar
Brear, M. J., Nicoud, F., Talei, M., Giauque, A. & Hawkes, E. R. 2012 Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 5373.Google Scholar
Chiu, H. H. & Summerfield, M. 1974 Theory of combustion noise. Acta Astron. 1, 967984.Google Scholar
Cuadra, E. 1967 Acoustic wave generation by entropy discontinuities flowing past an area change. J. Acoust. Soc. Am. 42 (4), 725732.Google Scholar
Dowling, A. P. & Mahmoudi, Y. 2015 Combustion noise. Proc. Combust. Inst. 35, 65100.Google Scholar
Duran, I. & Moreau, S. 2013 Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. J. Fluid Mech. 723, 190231.Google Scholar
Dyson, F. J. 1949 The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75 (3), 486502.Google Scholar
Giusti, A., Worth, N. A., Mastorakos, E. & Dowling, A. P. 2017 Experimental and numerical investigation into the propagation of entropy waves. AIAA J. 55 (2), 446458.Google Scholar
Goh, C. S. & Morgans, A. S. 2013 The influence of entropy waves on the thermoacoustic stability of a model combustor. Combust. Sci. Technol. 185 (2), 249268.Google Scholar
Goodwin, D. G., Moffat, H. K. & Speth, R. L.2017 Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.3.0. http://www.cantera.org.Google Scholar
Howe, M. S. & Liu, J. T. C. 1977 The generation of sound by vorticity waves in swirling duct flows. J. Fluid Mech. 81, 369383.Google Scholar
Ihme, M. 2017 Combustion and engine-core noise. Annu. Rev. Fluid Mech. 49 (1), 277310.CrossRefGoogle Scholar
Lam, C. S. 1998 Decomposition of time-ordered products and path-ordered exponentials. J. Math. Phys. 39 (10), 55435558.Google Scholar
Magri, L., O’Brien, J. & Ihme, M. 2016 Compositional inhomogeneities as a source of indirect combustion noise. J. Fluid Mech. 799, R4.Google Scholar
Magri, L., O’Brien, J. D. & Ihme, M.2017 Effects of nozzle Helmholtz number on indirect combustion noise by compositional perturbations. In Proceedings of ASME Turbo Expo 2017, GT2017-63382. doi:10.1115/GT2017-63382.Google Scholar
Marble, F. E. & Candel, S. M. 1977 Acoustic disturbance from gas non-uniformities convected through a nozzle. J. Sound Vib. 55 (2), 225243.Google Scholar
Morfey, C. L. 1973 Amplification of aerodynamic noise by convective flow inhomogeneities. J. Sound Vib. 31, 391397.CrossRefGoogle Scholar
Morgans, A. S & Duran, I. 2016 Entropy noise: a review of theory, progress and challanges. Intl J. Spray Combust. Dyn. 8 (4), 285298.Google Scholar
Morgans, A. S., Goh, C. S. & Dahan, J. A. 2013 The dissipation and shear dispersion of entropy waves in combustor thermoacoustics. J. Fluid Mech. 733, R2.Google Scholar
Motheau, E., Nicoud, F. & Poinsot, T. 2014 Mixed acoustic-entropy combustion instabilities in gas turbines. J. Fluid Mech. 749, 542576.CrossRefGoogle Scholar
Polifke, W., Paschereit, C. O. & Döbbeling, K. 2001 Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit. Intl J. Acoust. Vib. 6, 135146.Google Scholar
Rolland, E. O., De Domenico, F. & Hochgreb, S.2017 Direct and indirect noise generated by injected entropic and compositional inhomogeneities. In Proceedings of ASME Turbo Expo 2017, GT2017-64428. doi:10.1115/GT2017-64428.Google Scholar
Sinai, Y. L. 1980 The generation of combustion noise by chemical inhomogeneities in steady, low-Mach-number duct flows. J. Fluid Mech. 99, 383397.Google Scholar
Strahle, W. C. 1976 Noise produced by fluid inhomogeneities. AIAA J. 14 (7), 985987.CrossRefGoogle Scholar
Wassmer, D., Schuermans, B., Paschereit, C. O. & Moeck, J. P. 2017 Measurement and modeling of the generation and the transport of entropy waves in a model gas turbine combustor. Intl J. Spray Combust. Dyn. doi:10.1177/1756827717696326.Google Scholar
Williams, F. A. 1985 Combustion Theory. Perseus Books.Google Scholar