Published online by Cambridge University Press: 20 May 2010
We consider a viscous, incompressible fluid confined in a narrow annular channel rotating rapidly about its axis of symmetry with angular velocity Ω that itself precesses slowly about an axis fixed in an inertial frame. The precessional problem is characterized by three parameters: the Ekman number E, the Poincaré number ε and the aspect ratio of the channel Γ. Dependent upon the size of Γ, precessionally driven flows can be either resonant or non-resonant with the Poincaré forcing. By assuming that it is the viscous effect, rather than the nonlinear effect, that plays an essential role at exact resonance, two asymptotic expressions for ε ≪ 1 and E ≪ 1 describing the single and double inertial-mode resonance are derived under the non-slip boundary condition. An asymptotic expression describing non-resonant precessing flows is also derived. Further studies based on numerical integrations, including two-dimensional linear analysis and direct three-dimensional nonlinear simulation, show a satisfactory quantitative agreement between the three asymptotic expressions and the fuller numerics for small and moderate Reynolds numbers at an asymptotically small E. The transition from two-dimensional precessing flow to three-dimensional small-scale turbulence for large Reynolds numbers is also investigated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.