Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:21:52.271Z Has data issue: false hasContentIssue false

Odd-viscosity-induced stabilization of viscous thin liquid films

Published online by Cambridge University Press:  04 September 2019

E. Kirkinis*
Affiliation:
Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
A. V. Andreev
Affiliation:
Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
*
Email address for correspondence: kirkinis@uw.edu

Abstract

Thin viscous liquid films sitting on a solid substrate support nonlinear capillary waves, driven by surface shear stresses at a liquid–gas interface. When surface tension is spatially dependent other mechanisms, such as the thermocapillary effect, influence the dynamics of thin films. In this article we show that in liquids with broken time-reversal symmetry the character of the aforementioned waves and of the thermocapillary effect are significantly modified due to the presence of odd or Hall viscosity in the liquid. This is because odd viscosity gives rise to new terms in the pressure gradient of the flow thus modifying the evolution equation of the liquid–gas interface accordingly. These terms in turn break the reflection symmetry of the evolution equation leading the system to evolve from a pitchfork to a Hopf bifurcation. The odd-viscosity incipient waves can stabilize unstable thin liquid films. For instance, we show that they can suppress the thermocapillary instability. We establish the parameter ranges that odd viscosity has to satisfy in order to initiate those waves that will lead to stability.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abanov, A., Can, T. & Ganeshan, S. 2018 Odd surface waves in two-dimensional incompressible fluids. SciPost Physics 5 (1), 010.Google Scholar
Avron, J. E. 1998 Odd viscosity. J. Stat. Phys. 92 (3–4), 543557.Google Scholar
Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. 2017 Odd viscosity in chiral active fluids. Nat. Commun. 8 (1), 1573.Google Scholar
Chaves, A., Zahn, M. & Rinaldi, C. 2008 Spin-up flow of ferrofluids: asymptotic theory and experimental measurements. Phys. Fluids 20 (5), 053102.Google Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 8511112.Google Scholar
Davis, M. J., Gratton, M. B. & Davis, S. H. 2010 Suppressing van der Waals driven rupture through shear. J. Fluid Mech. 661, 522539.Google Scholar
Davis, S. H. 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19 (1), 403435.Google Scholar
Davis, S. H. 2002 Interfacial fluid dynamics. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), pp. 151. Cambridge University Press.Google Scholar
Erneux, T. & Davis, S. H. 1993 Nonlinear rupture of free films. Phys. Fluids A 5 (5), 11171122.Google Scholar
Ganeshan, S. & Abanov, A. G. 2017 Odd viscosity in two-dimensional incompressible fluids. Phys. Rev. Fluids 2 (9), 094101.Google Scholar
Kataoka, D. E. & Troian, S. M. 1999 Patterning liquid flow on the microscopic scale. Nature 402 (6763), 794797.Google Scholar
Kawahara, T. 1983 Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation. Phys. Rev. Lett. 51 (5), 381383.Google Scholar
Kawahara, T. & Toh, S. 1988 Pulse interactions in an unstable dissipative-dispersive nonlinear system. Phys. Fluids 31 (8), 21032111.Google Scholar
Kerchman, V. I. & Frenkel, A. L. 1994 Interactions of coherent structures in a film flow: simulations of a highly nonlinear evolution equation. Theor. Comput. Fluid Dyn. 6 (4), 235254.Google Scholar
Kirkinis, E. 2017 Magnetic torque-induced suppression of van-der-Waals-driven thin liquid film rupture. J. Fluid Mech. 813, 9911006.Google Scholar
Kirkinis, E. & Davis, S. H. 2015 Stabilization mechanisms in the evolution of thin liquid-films. Proc. R. Soc. Lond. A 471, 20150651.Google Scholar
Kirkinis, E. & Andreev, A. V. 2019 Healing of thermocapillary film rupture by viscous heating. J. Fluid Mech. 872, 308326.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Course of Theoretical Physics, vol. 6. Pergamon.Google Scholar
Lapa, M. F. & Hughes, T. L. 2014 Swimming at low Reynolds number in fluids with odd, or hall, viscosity. Phys. Rev. E 89 (4), 043019.Google Scholar
Lifshitz, E. M. & Pitaevskii, L. P. 1981 Course of Theoretical Physics. Vol. 10: Physical Kinetics, Butterworth Heinemann.Google Scholar
Maggi, C., Saglimbeni, F., Dipalo, M., De Angelis, F. & Di Leonardo, R. 2015 Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nat. Commun. 6, 7855.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.Google Scholar
Shampine, L. F. & Reichelt, M. W. 1997 The matlab ode suite. SIAM J. Sci. Comput. 18 (1), 122.Google Scholar
Sumino, Y., Nagai, K. H., Shitaka, Y., Tanaka, D., Yoshikawa, K., Chaté, H. & Oiwa, K. 2012 Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483 (7390), 448452.Google Scholar
Tan, M. J., Bankoff, S. G. & Davis, S. H. 1990 Steady thermocapillary flows of thin liquid layers. I. Theory. Phys. Fluids A 2 (3), 313321.Google Scholar
Tsai, J.-C., Ye, F., Rodriguez, J., Gollub, J. P. & Lubensky, T. C. 2005 A chiral granular gas. Phys. Rev. Lett. 94 (21), 214301.Google Scholar