Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T12:34:04.114Z Has data issue: false hasContentIssue false

Occlusion criteria in tubes under transverse body forces

Published online by Cambridge University Press:  13 July 2011

ROBERT MANNING
Affiliation:
School of Aeronautics and Astronautics, Purdue University, W. Lafayette, IN 47907, USA
STEVEN COLLICOTT
Affiliation:
School of Aeronautics and Astronautics, Purdue University, W. Lafayette, IN 47907, USA
ROBERT FINN*
Affiliation:
Mathematics Department, Stanford University, Stanford, CA 94305-2125, USA
*
Email address for correspondence: finn@math.stanford.edu

Abstract

When a fluid in a tube is occluded, one finds a static configuration in which the occluding free surface of the fluid is an equilibrium capillary surface spanning the tube. We extend known criteria for existence and non-existence of such a surface, leading to an explicit mathematically rigorous occlusion criterion for cylindrical tubes in a transverse body force field, depending on the force magnitude and contact angle. For any contact angle γ ≠ π/2, we provide further an explicit design of a tube section, which will not occlude in a downward gravity field, regardless of the field strength. In addition, we derive a precise analytic occlusion criterion for liquid partially filling a circular vessel spinning about its axis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brakke, K. A. 2011 Surface Evolver. http://www.susqu.edu/facstaff/b/brakke/.Google Scholar
Bull, J. 2005 Cardiovascular bubble dynamics. Crit. Rev. Biomed. Eng. 33, 299346.CrossRefGoogle ScholarPubMed
Chen, Y. & Collicott, S. H. 2006 Study of wetting in an asymmetrical vane-wall gap in propellant tanks. AIAA J. 44, 859867.CrossRefGoogle Scholar
Collicott, S. H., Lindsley, W. G. & Frazer, D. G. 2006 Zero-gravity liquid–vapor interfaces in circular cylinders. Phys. Fluids 18, 087109.Google Scholar
Collicott, S. H. & Weislogel, M. M. 2004 Computing existence and stability of capillary surfaces using Surface Evolver. AIAA J. 42, 289295.CrossRefGoogle Scholar
Concus, P. 1968 Static menisci in a vertical right circular cylinder. J. Fluid Mech. 34, 481495.CrossRefGoogle Scholar
Concus, P. & Finn, R. 1969 On the behavior of a capillary surface in a wedge. Proc. Natl Acad. Sci. 63 (2), 292299.CrossRefGoogle Scholar
Concus, P. & Finn, R. 1990 Dichotomous behavior of capillary surfaces in zero gravity. Micrgravity Sci. Technol. 3, 8792.Google Scholar
Derdul, J. D., Masica, W. J. & Petrash, D. A. 1964 Hydrostatic stability of liquid–vapor interface in low-acceleration field. NASA TN-D-2444.Google Scholar
Finn, R. 1975 On the capillary problem. Milan J. Math. 45, 4148.Google Scholar
Finn, R. 1986 Equilibrium Capillary Surfaces. Springer-Verlag.CrossRefGoogle Scholar
Finn, R. 2002. Eight remarkable properties of capillary surfaces. Math. Intell. 24 (3) 2133.CrossRefGoogle Scholar
Giusti, E. 1984 Minimal Surfaces and Functions of Bounded Variation. Birkháuser Boston.CrossRefGoogle Scholar
Gravesen, P. Branebjerg, J. & Jensen, O. S. 1993 Microfluidics – a review. J. Micromech. Microengng. 3 (4), 168182.CrossRefGoogle Scholar
Jensen, M., Liebhaber, A., Pelcé, P. & Zocchi, G. 1987 Effect of gravity on the Saffman–Taylor meniscus: Theory and experiment. Phys. Rev. A 35 (5), 22212227.CrossRefGoogle ScholarPubMed
deLazzer, A. Lazzer, A., Langbein, D., Dreyer, M. & Rath, H. J. 1996 Mean curvature of liquid surfaces in cylindrical containers of arbitrary cross-section. Microgravity Sci. Technol. 9 (3), 208219.Google Scholar
de Lazzer, A., Stange, M., Dreyer, M. & Rath, H. 2003 Influence of lateral acceleration on capillary interfaces between parallel plates. Microgravity Sci. Technol. 14, 320.Google Scholar
Litterst, C., Eccarius, S., Hebling, C., Zengerle, R. & Koltay, P. 2006 Increasing uDMFC efficiency by passive CO2 bubble removal and discontinuous operation. J. Micromech. Microeng. 16 (9), 248253.Google Scholar
Masica, W. J. 1967 Experimental investigation of liquid surface motion in respond to lateral acceleration during weightlessness. NASA TN-D-4066.Google Scholar
Reynolds, W. C. & Satterlee, H. M 1966 Liquid propellant behavior at low and zero g. In Dynamic Behavior of Liquids in Moving Containers (ed. Abramsom, H. N.), NASA-SP-166 1966.Google Scholar
Smedley, G. 1990 Containments for liquids at zero gravity. Microgravity Sci. Technol. 3, 1323.Google Scholar
Vogel, T. I. 1988 Uniqueness for certain surfaces of prescribed mean curvature. Pacific J. Math. 134 (1), 197207.CrossRefGoogle Scholar
Zhang, F. Y. Yang, X. G. & Wang, C. Y. 2006 Liquid water removal from a polymer electrolyte fuel cell. J. Electrochem. Soc. 153, A225A232.CrossRefGoogle Scholar
Zoval, J. V. & Madou, M. J. 2004 Centrifuge-based fluidic platforms. Proc. IEEE 92, 140153.CrossRefGoogle Scholar