Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T23:50:12.707Z Has data issue: false hasContentIssue false

Numerical study of bluntness effects on laminar leading edge separation in hypersonic flow

Published online by Cambridge University Press:  13 September 2019

Amna Khraibut*
Affiliation:
School of Engineering and Information Technology, Northcott Drive, Canberra ACT 2612, Australia
S. L. Gai
Affiliation:
School of Engineering and Information Technology, Northcott Drive, Canberra ACT 2612, Australia
A. J. Neely
Affiliation:
School of Engineering and Information Technology, Northcott Drive, Canberra ACT 2612, Australia
*
Email address for correspondence: amnakhraibut80@gmail.com

Abstract

Bluntness effects on laminar hypersonic leading edge separation are investigated numerically at Mach number $M\approx 10$, unit Reynolds number $Re=1.3\times 10^{6}~\text{m}^{-1}$, specific enthalpy $h_{o}=3.1~\text{MJ}~\text{kg}^{-1}$ and wall-to-stagnation temperature ratio $T_{w}/T_{o}=0.1$. Such effects are important from an experimental point of view and because bluntness can affect a separated flow favourably or adversely. In this study, two blunt leading edge cases of small radius ($15~\unicode[STIX]{x03BC}\text{m}$) and large radius ($100~\unicode[STIX]{x03BC}\text{m}$) are investigated. A comparison with the idealised sharp leading edge case is also given. General flow features and surface parameters such as the shear stress, pressure and heat flux are presented and analysed. The results have also been interpreted in terms of Cheng’s displacement-bluntness similitude parameter affecting the size of separation. Previous experiments by Holden delineated small and large bluntness effects based on Cheng’s parameter and considering small to moderate separated regions. In this study, leading edge separation was found to suppress the favourable effect of bluntness in delaying separation. Bluntness, furthermore, seemed to promote the appearance of secondary vortices within a main separated region. Analysis of reverse flow boundary layer profiles such as velocity, pressure and temperature is also given. It is shown that bluntness accentuates large transverse gradients. This in turn adversely effects the reverse flow boundary layer leading to the appearance of secondary vortices.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertram, M. H. 1954 Viscous and leading-ddge thickness effects on the pressures on the surface of a flat plate in hypersonic flow. J. Aero. Sci. 21 (6), 430431.Google Scholar
Bertram, M. H. & Henderson, A. Jr 1958 Effects of boundary-layer displacement and leading-edge bluntness on pressure distribution, skin friction, and heat transfer of bodies at hypersonic speeds. NACA Tech. Note 4301.Google Scholar
Borovoy, V. Y., Mosharov, V. E., Radchenko, V. N., Skuratov, A. S. & Struminskaya, I. V. 2014 Leading edge bluntness effect on the flow in a model air-inlet. Fluid Dyn. 49 (4), 454467.Google Scholar
Borovoy, V. Y., Skuratov, A. S. & Struminskaya, I. V. 2008 On the existence of a threshold value of the plate bluntness in the interference of an oblique shock with boundary and entropy layers. Fluid Dyn. 43 (3), 369379.Google Scholar
Brinich, P. F.1956 Effect of leading-edge geometry on boundary-layer transition at mach 3.1. NACA Tech. Note 3659.Google Scholar
Brown, S. N., Cheng, H. K. & Lee, C. J. 1990 Inviscid-viscous interaction on triple-deck scales in a hypersonic flow with strong wall cooling. J. Fluid Mech. 220, 309337.Google Scholar
Brown, S. N. & Stewartson, K. 1969 Laminar separation. Annu. Rev. Fluid Mech. 1 (1), 4572.Google Scholar
Burggraf, O. R., Rizzetta, D., Werle, M. J. & Vatsa, V. N. 1979 Effect of Reynolds number on laminar separation of a supersonic stream. AIAA J. 17 (4), 336343.Google Scholar
Candler, G. V., Johnson, H. B., Nompelis, I., Gidzak, V. M., Subbareddy, P. K. & Barnhardt, M.2015 Development of the us3d code for advanced compressible and reacting flow simulations. In 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-1893.Google Scholar
Candler, G. V., Subbareddy, P. K. & Brock, J. M. 2014 Advances in computational fluid dynamics methods for hypersonic flows. J. Spacecr. Rockets 52 (1), 1728.Google Scholar
Cassel, K. W., Ruban, A. I. & Walker, J. A. 1995 An instability in supersonic boundary-layer flow over a compression ramp. J. Fluid Mech. 300, 265285.Google Scholar
Cassel, K. W., Ruban, A. I. & Walker, J. D. A. 1996 The influence of wall cooling on hypersonic boundary-layer separation and stability. J. Fluid Mech. 321, 189216.Google Scholar
Catherall, D. & Mangler, K. W. 1966 The integration of the two-dimensional laminar boundary-layer equations past the point of vanishing skin friction. J. Fluid Mech. 26 (1), 163182.Google Scholar
Chapman, D. R., Kuehn, D. M. & Larson, H. K.1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Tech. Rep. 1356.Google Scholar
Cheng, H. K., Hall, J. G., Golian, T. C. & Hertzberg, A. 1961 Boundary-layer displacement and leading-edge bluntness effects in high-temperature hypersonic flow. J. Aero. Sci. 28 (5), 353381.Google Scholar
Cheng, H. K. & Pallone, A. J. 1956 Inviscid leading-edge effect in hypersonic flow. J. Aero. Sci. 23 (7), 700702.Google Scholar
Coenen, E. G. M. 1999 Quasi-simultaneous coupling for wing and airfoil flow. In Domain Decomposition Methods in Science and Engineering, pp. 197205. Domain Decomposition Press.Google Scholar
Creager, M. O.1959 The effect of leading-edge sweep and surface inclination on the hypersonic flow field over a blunt flat plate. NASA-MEMO-12-26-58A.Google Scholar
Dietz, G. & Meijering, A. 1997 Numerical investigation of boundary-layer instabilities over a blunt flat plate at angle of attack in supersonic flow. In New Results in Numerical and Experimental Fluid Mechanics, pp. 103110. Springer.Google Scholar
Drayna, T. W., Nompelis, I. & Candler, G. V. 2006 Numerical simulation of the AEDC waverider at Mach 8. In 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, AIAA 2006–2816.Google Scholar
Edney, B. E. 1968 Effects of shock impingement on the heat transfer around blunt bodies. AIAA J. 6 (1), 1521.Google Scholar
Edwards, C. L. W & Anders, J. B.1968 Low-density, leading-edge bluntness, and ablation effects on wedge-induced laminar boundary layer separation at moderate enthalpies in hypersonic flow. NASA Tech. Note D-4829.Google Scholar
Gadd, G. E. 1957 An experimental investigation of heat transfer effects on boundary layer separation in supersonic flow. J. Fluid Mech. 2 (02), 105122.Google Scholar
Goldstein, S. 1948 On laminar boundary-layer flow near a position of separation. Q. J. Mech. Appl. Maths 1 (1), 4369.Google Scholar
Gray, J. D. & Rhudy, R. W.1972 Effects of wall cooling and leading-edge blunting on ramp-induced, laminar flow separations at Mach numbers from 3 through 6. Tech. Rep. Arnold Engineering Development Center. AEDC-TR-71-274.Google Scholar
Hama, F. R. 1968 Experimental studies on the lip shock. AIAA J. 6 (2), 212219.Google Scholar
Hayes, W. D. 1959 Viscous hypersonic similitude. J. Aero. Sci. 26 (12), 815824.Google Scholar
Hayes, W. D. & Probstein, R. F. 1959 Hypersonic Flow Theory. Elsevier.Google Scholar
Hirschel, E. H. 2005 Basics of Aerothermodynamics, 2nd edn. Springer.Google Scholar
Holden, M. S. 1966 Experimental studies of separated flows at hypersonic speeds. II – Two-dimensional wedge separated flow studies. AIAA J. 4 (5), 790799.Google Scholar
Holden, M. S. 1971 Boundary-layer displacement and leading-edge bluntness effects on attached and separated laminar boundary layers in a compression corner. II – Experimental study. AIAA J. 9 (1), 8493.Google Scholar
Holden, M. S., Wadhams, T. P., MacLean, M. G. & Dufrene, A. T.2013 Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows for blindcode validation studies. In 21st AIAA Computational Fluid Dynamics Conference, 24–27 June, San Diego, California, USA, AIAA-2013-2837, p. 2837.Google Scholar
Holloway, P. F., Sterrett, J. R. & Creekmore, H. S.1965 An Investigation of Heat Transfer within Regions of Separated Flow at a Mach Number of 6.0. NASA Tech. Note TN D-3074.Google Scholar
Hruschka, R. B. 2010 Optical Studies and Simulations of Hypervelocity Flow Fields Around Blunt Bodies. Citeseer.Google Scholar
John, B. & Kulkarni, V. 2014 Effect of leading edge bluntness on the interaction of ramp induced shock wave with laminar boundary layer at hypersonic speed. Comput. Fluids 96, 177190.Google Scholar
Kemp, J. H. 1969 Hypersonic viscous interaction on sharp and blunt inclined plates. AIAA J. 7 (7), 12801289.Google Scholar
Kerimbekov, R. M., Ruban, A. I. & Walker, J. D. A. 1994 Hypersonic boundary-layer separation on a cold wall. J. Fluid Mech. 274, 163195.Google Scholar
Khorrami, A. F. & Smith, F. T. 1994 Hypersonic aerodynamics on thin bodies with interaction and upstream influence. J. Fluid Mech. 277, 85108.Google Scholar
Khraibut, A.2018 Laminar hypersonic leading edge separation. PhD thesis, University of New South Wales.Google Scholar
Khraibut, A., Deepak, N. R., Gai, S. L. & Neely, A. J. 2014 Hypersonic leading edge separation. In 19th Australasian Fluid Mechanics Conference, vol. 1, pp. 268271. Australasian Fluid Mechanics Society.Google Scholar
Khraibut, A., Gai, S. L., Brown, L. M. & Neely, A. J. 2017 Laminar hypersonic leading edge separation – a numerical study. J. Fluid Mech. 821, 624646.Google Scholar
Khraibut, A., Gai, S. L. & Neely, A. J.2015 Numerical investigation of bluntness effects on hypersonic leading edge separation. In 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, AIAA-2015-0984.Google Scholar
Le Balleur, J. C. 1977 Viscous-inviscid flow matching: Analysis of the problem including separation and shock waves. La Rech. Aerospatialele 1977‐6, 349358.Google Scholar
Le Balleur, J. C. 1978 Viscous-inviscid flow matching: Numerical method and applications to two-dimensional, transonic and supersonic flows. La Rech. Aerospatiale, Bull. Bimestriel, (Paris) 183, 6576.Google Scholar
Le Page, L. M., Barret, M., O’Byrne, S. & Gai, S. L. 2019 Rotational temperature imaging of a leading-edge separation in hypervelocity flow. In 31st International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings 2132. 110001.Google Scholar
Lees, L. & Probstein, R. F. 1952 Hypersonic viscous flow over a flat plate. In Physical Review, vol. 86, pp. 600600.Google Scholar
Lighthill, M. J.1953 On boundary layers and upstream influence. II. Supersonic flows without separation. 217 (1131), 478–507.Google Scholar
Mallinson, S. G., Gai, S. L. & Mudford, N. R. 1996 High-enthalpy, hypersonic compression corner flow. AIAA J. 34 (6), 11301137.Google Scholar
Marini, M.1998 Effects of flow and geometry parameters on shock-wave boundary-layer interaction phenomena. In 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, USA, AIAA-98-1570.Google Scholar
Mason, W. H. & Lee, J. 1994 Aerodynamically blunt and sharp bodies. J. Spacecr. Rockets 31 (3), 378382.Google Scholar
Messiter, A. F. 1970 Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Maths 18 (1), 241257.Google Scholar
Moeckel, W. E.1957 Some effects of bluntness on boundary-layer transition and heat transfer at supersonic speeds. NACA Tech. Rep. TR-1312.Google Scholar
Nagamatsu, H. T., Graber, B. C. & Sheer, R. E. 1966 Roughness, bluntness, and angle-of-attack effects on hypersonic boundary-layer transition. J. Fluid Mech. 24 (1), 131.Google Scholar
Neiland, V. Y. 1969 Theory of laminar boundary layer separation in supersonic flow. Fluid Dyn. 4 (4), 3335.Google Scholar
Neiland, V. Y. 1970 Asymptotic theory of plane steady supersonic flows with separation zones. Fluid Dyn. 5 (3), 372381.Google Scholar
Neiland, V. Y. 1973 Special features of boundary-layer separation on a cooled body and its interaction with a hypersonic flow. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 6, 99109 (translation in Fluid Dyn. 8 (6), 931–939).Google Scholar
Neiland, V. Y., Sokolov, L. A. & Shvedchenko, V. V. 2009 Temperature factor effect on separated flow features in supersonic gas flow. In BAIL 2008-Boundary and Interior Layers, pp. 3954. Springer.Google Scholar
Nompelis, I. & Candler, G. V.2014 US3D predictions of double-cone and hollow cylinder-flare flows at high enthalpy. In 44th AIAA Fluid Dynamics Conference, Atlanta, GA, USA, AIAA 2014-3366.Google Scholar
Oswatitsch, K. 1957 The conditions for the separation of boundary layers. In Contributions to the Development of Gasdynamics, pp. 618. Springer.Google Scholar
Pate, S. R.1977 Dominance of radiated aerodynamic noise on boundary-layer transition in supersonic-hypersonic wind tunnels: theory and application. PhD thesis, University of Tennessee, Knoxville, TN.Google Scholar
Prandtl, L. 1904 On fluid motions with very small friction. Verhldg 3, 484491.Google Scholar
Roy, C. J. 2003 Grid convergence error analysis for mixed-order numerical schemes. AIAA J. 41 (4), 595604.Google Scholar
Santos, W. F. N. 2005 Leading-edge bluntness effects on aerodynamic heating and drag of power law body in low-density hypersonic flow. J. Braz. Soc. Mech. Sci. Engng 27 (3), 236242.Google Scholar
Seddougui, S. O., Bowles, R. I. & Smith, F. T. 1991 Surface-cooling effects on compressible boundary-layer instability. Eur. J. Mech. (B/Fluids) 10 (2), 117145.Google Scholar
Shvedchenko, V. V. 2009 About the secondary separation at supersonic flow over a compression ramp. TsAGI Sci. J. 40 (5), 587607.Google Scholar
Smith, F. T. 1986 Steady and unsteady boundary-layer separation. Annu. Rev. Fluid Mech. 18 (1), 197220.Google Scholar
Smith, F. T. 1988 A reversed flow singularity in interacting boundary layers. Proc. R. Soc. Lond. A A420, 2152.Google Scholar
Softley, E. 1969 Boundary layer transition on hypersonic blunt, slender cones. In 2nd Fluid and Plasma Dynamics Conference, San Francisco, CA, USA, AIAA 1969-705.Google Scholar
Stetson, K. F.1978 Effect of bluntness and angle of attack on boundary layer transition on cones and biconic configurations. In Proceedings of 17th Aerospace Sciences Meeting, New Orleans, LA, USA, AIAA-1979-269.Google Scholar
Stewartson, K. 1964 The Theory of Laminar Boundary Layers in Compressible Fluids, vol. 3. Clarendon Press.Google Scholar
Stewartson, K. 1970 On laminar boundary layers near corners. Q. J. Mech. Appl. Maths 23 (2), 137152.Google Scholar
Stewartson, K. 1974 Multistructured boundary layers on flatplates and related bodies. Adv. Appl. Mech. 14, 145239.Google Scholar
Stewartson, K. & Williams, P. G. 1969 Self-induced separation. Proc. R. Soc. Lond. A 312 (1509), 181206.Google Scholar
Stollery, J. L. 1972 Viscous interaction effects on re-entry aerothermodynamics: theory and experimental results. AGARD Lecture Series 42, 10-1–10-28.Google Scholar
Sychev, V. V. 1972 Laminar separation. Fluid Dyn. 7 (3), 407417.Google Scholar
Taylor, G. 1950 The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A 201 (1065), 159174.Google Scholar
Townsend, J. C.1966 Effects of leading-edge bluntness and ramp deflection angle on laminar boundary-layer separation in hypersonic flow. NASA Tech. Note D-3290.Google Scholar
Tsien, H. 1946 Similarity laws of hypersonic flows. Stud. Appl. Maths 25 (1–4), 247251.Google Scholar
Tumuklu, O., Levin, D. A. & Theofilis, V. 2018 Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach. Phys. Fluids 30 (4), 046103.Google Scholar
Van Leer, B. 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32 (1), 101136.Google Scholar
Veldman, A. E. P.1979 A numerical method for the calculation of laminar, incompressible boundary layers with strong viscous-inviscid interaction. Tech. Rep. NLR TR 79023. National Aerospace Laboratory.Google Scholar
Veldman, A. E. P. 1980 Boundary layers with strong interaction: from asymptotic theory to calculation method. In BAIL 1 Conf. on Boundary and Interior Layers – Computation and Asymptotic Methods, pp. 149163. Boole Press.Google Scholar
Werle, M. J. & Vasta, V. N. 1974 New method for supersonic boundary-layer separations. AIAA J. 12 (11), 14911497.Google Scholar
Wright, M. J., Candler, G. V. & Bose, D. 1998 Data parallel line relaxation method for the Navier–Stokes equations. AIAA J. 36 (9), 16031609.Google Scholar