Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:16:59.485Z Has data issue: false hasContentIssue false

Non-normality and nonlinearity in combustion–acoustic interaction in diffusion flames

Published online by Cambridge University Press:  14 December 2007

KOUSHIK BALASUBRAMANIAN
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
R. I. SUJITH*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
*
Author to whom correspondence should be addressed: sujith@iitm.ac.in.

Abstract

The role of non-normality and nonlinearity in flame–acoustic interaction in a ducted diffusion flame is investigated in this paper. The infinite rate chemistry model is employed to study unsteady diffusion flames in a Burke–Schumann type geometry. It has been observed that even in this simplified case, the combustion response to perturbations of velocity is non-normal and nonlinear. This flame model is then coupled with a linear model of the duct acoustic field to study the temporal evolution of acoustic perturbations. The one-dimensional acoustic field is simulated in the time domain using the Galerkin technique, treating the fluctuating heat release from the combustion zone as a compact acoustic source. It is shown that the coupled combustion–acoustic system is non-normal and nonlinear. Further, calculations showed the occurrence of triggering; i.e. the thermoacoustic oscillations decay for some initial conditions whereas they grow for some other initial conditions. It is shown that triggering occurs because of the combined effect of non-normality and nonlinearity. For such a non-normal system, resonance or ‘pseudoresonance’ may occur at frequencies far from its natural frequencies. Non-normal systems can be studied using pseudospectra, as eigenvalues alone are not sufficient to predict the behaviour of the system. Further, both necessary and sufficient conditions for the stability of a thermoacoustic system are presented in this paper.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ananthkrishnan, N., Deo, S. & Culick, F. E. C. 2005 Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber. Combust. Sci. Tech. 177, 221247.CrossRefGoogle Scholar
Baggett, J. S., Driscoll, T. A. & Trefethen, L. N. 1995 A mostly linear model of transition to turbulence. Phys. Fluids 7, 833838.CrossRefGoogle Scholar
Balasubramanian, K. & Sujith, R. I. 2007 Thermoacoustic instability in a Rijke tube: non-normality and nonlinearity, AIAA 2007-3428, 13th AIAA/CEAS Aeroacoustics Conf. Rome, Italy, May 21–23.Google Scholar
Buckmaster, J. 2002 Edge-flames. Prog. Energy Combust. Sci. 28, 435475.CrossRefGoogle Scholar
Buckmaster, J., Jackson, T. L. & Yao, J. 1999 An elementary discussion of propellant flame geometry. Combust. Flame 117, 541552.CrossRefGoogle Scholar
Chaos, M., Chen, R. H., Welle, E. J. & Roberts, W. L. 2005 Fuel Lewis number effects in unsteady Burke–Schumann hydrogen flames. Combust. Sci. Technol. 177, 7588.CrossRefGoogle Scholar
Chung, S. H. & Law, C. K. 1984 Burke–Schumann flame with streamwise and preferential diffusion. Combust. Sci. Technol. 37, 2146.CrossRefGoogle Scholar
Culick, F. E. C., Burnley, V. & Swenson, G. 1995 Pulsed instabilities in solid propellant rockets. J. Propul. Power 11, 657665.CrossRefGoogle Scholar
Cuenot, B., Egolfopoulos, F. N. & Poinsot, T. 2000 An unsteady laminar flamelet model for non-premixed combustion. Combust. Theory Modelling 4, 7797.CrossRefGoogle Scholar
Dowling, A. P. 1995 The calculation of thermoacoustic oscillations. J. Sound Vib. 180, 557581.CrossRefGoogle Scholar
Dowling, A. P. & Stow, S. R. 2003 Acoustic analysis of gas turbine combustors. J. Propul. Power 19, 751764.CrossRefGoogle Scholar
Farrell, B. F. 1989 Optimal excitation of baroclinic waves. J. Atmos. Sci. 46, 11931206.2.0.CO;2>CrossRefGoogle Scholar
Fichera, A., Losseno, C. & Pagano, A. 2001 Clustering of chaotic dynamics of a lean gasturbine combustor. Appl. Energy 69, 101117.CrossRefGoogle Scholar
Gebgart, T. & Grossmann, S. 1994 Chaos transition despite linear stability. Phys. Rev. E 50, 37053711.Google Scholar
Handel, A. 2004 Limits of localized control in extended nonlinear systems. PhD thesis School of Physics, Georgia Institute of Technology.Google Scholar
Heckl, M. A. 1990 Nonlinear acoustic effects in a Rijke tube. Acustica 72, 6371.Google Scholar
Henningson, D. S. & Schmid, P. J. 1992 Vector eigen function-expansion for plane channel flows. stud. Appl. Maths 87, 1543.CrossRefGoogle Scholar
Hertzberg, J. R. 1997 Conditions for a Split Diffusion Flame. Combust. Flame 109, 314322.CrossRefGoogle Scholar
Jackson, T. L. & Buckmaster, J. 2000 Nonpremixed periodic flames supported by heterogeneous propellants. J. Propul. Power 16, 498504.CrossRefGoogle Scholar
Kerner, W. 1989 Large scale complex eigenvalue problems. J. Comput. Phys. 85, 185.CrossRefGoogle Scholar
Kurdyumov, V. N. & Matalon, M. 2004 Dynamics of an edge flame in a mixing layer. Combust. Flame 139, 329339.CrossRefGoogle Scholar
Lang, W. 1991 Harmonic frequency generation by oscillating flames. Combust. Flame 83, 253262.CrossRefGoogle Scholar
Lieuwen, T. 2003 Modeling premixed combustion acoustic wave interactions: a review. J. Propul. Power 19, 765781.CrossRefGoogle Scholar
Matveev, K. I. 2003 Thermo-acoustic instabilities in the Rijke tube: experiments and modeling. PhD thesis, California Institute of Technology.Google Scholar
Matveev, K. I. & Culick, F. E. C. 2003 A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 175, 10591083.CrossRefGoogle Scholar
Mcmanus, K., Poinsot, T. & Candel, S. M. 1993 A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 19, 129.CrossRefGoogle Scholar
Meirovitch, L. 1967 Analytical Methods in Vibrations. Macmillan.Google Scholar
Polifke, W. 2004 Numerical techniques for identification of acoustic multi-ports. In Advances in Aeroacoustics and Applications, VKI Lecture Series Monographs 2004–05. Von Karman Institute, Brussels.Google Scholar
Reddy, S. C. & Trefethen, L. N. 1994 Pseudospectra of the convection–diffusion operator. SIAM J. Appl. Maths 54, 16341639.CrossRefGoogle Scholar
Schadow, K., Gutmark, E., Parr, T., Parr, K., Wilson, K. & Crump, J. 1989 Large-scale coherent structures as drivers of combustion instability. Combust. Sci. Technol. 64, 167186.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Trefethen, L. N. 1997 Pseudospectra of linear operators. SIAM Rev. 39, 383406.CrossRefGoogle Scholar
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra. Princeton University Press.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed
Tyagi, M., Chakravarthy, S. R. & Sujith, R. I. 2007 Unsteady response of a ducted non-premixed flame and acoustic coupling. Combust. Theory Modeling 11, 205226.CrossRefGoogle Scholar
Vance, R., Miklavcic, R. & Wichman, I. S. 2001 On the stability of one-dimensional diffusion flames established between plane, parallel, porous walls. Combust. Theory Modeling 5, 2001, 147161.CrossRefGoogle Scholar
Wicker, J. M., Greene, W. D., Kim, S.-I. & Yang, V. 1996 Triggering of longitudinal combustion instabilities in rocket motors: nonlinear combustion response. J. Propul. Power 12, 11481158.CrossRefGoogle Scholar
Wu, X., Wang, M., Moin, P. & Peters, N. 2003 Combustion instability due the nonlinear interaction between sound and flame. J. Fluid Mech. 497, 2353.CrossRefGoogle Scholar
Yoon, H. G., Peddieson, J. & Purdy, K. R. 2001 Nonlinear response of a generalized Rijke tube. Intl. J. Engng. Sci. 39, 17071723.CrossRefGoogle Scholar
Zinn, B. T. & Lieuwen, T. C. 2005 Combustion instabilities: basic concepts. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (ed. T. C. Lieuwen & V. Yang), chap. 1. Progress in Astronautics and Aeronautics, vol. 210. AIAA.Google Scholar