Hostname: page-component-69cd664f8f-wvgvr Total loading time: 0 Render date: 2025-03-13T06:17:09.975Z Has data issue: false hasContentIssue false

Non-monotonic salt dependence of electro-osmotic flow in pH-regulated nanochannels

Published online by Cambridge University Press:  12 March 2025

Mingyu Duan
Affiliation:
Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, 100871, PR China
Luanzhe Xu
Affiliation:
Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, 100871, PR China
Jiadong Chen
Affiliation:
Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, 100871, PR China
Guang Chen*
Affiliation:
Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, 100871, PR China
*
Corresponding author: Guang Chen, guangc@pku.edu.cn

Abstract

Electro-osmotic flow (EOF) in nanochannels exhibits a puzzling non-monotonic dependence on salt concentration, which contrasts with observations in microchannels and remains not fully understood. In this work, we address this phenomenon through a theoretical investigation of EOF in $\mathrm{pH}$-regulated channels. New analytical approximations for electrostatic potential, EOF profile and electro-osmotic mobility beyond the Debye–Hückel limit are derived through asymptotic analysis. Our findings reveal that the surface electrostatic potential is independent of the channel size only when the half-channel size exceeds the Gouy–Chapman length. In contrast, surface ionization and net charge distribution play more crucial roles in EOF at the nanoscale, as they govern both the magnitude and the spatial distribution of the Coulomb driving force. As salt concentration increases, EOF velocity initially rises due to enhanced surface ionization, followed by a decline attributed to increased wall shear stress. This work provides key insights for EOF applications in nanofluidics and biomedical devices, and deepens the understanding of electrokinetic phenomena influenced by $\mathrm{pH}$-regulation effects.

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajdari, A. 1995 Electro-osmosis on inhomogeneously charged surfaces. Phys. Rev. Lett. 75 (4), 755758.CrossRefGoogle ScholarPubMed
Alizadeh, A., Hsu, W.-L., Wang, M. & Daiguji, H. 2021 Electroosmotic flow: from microfluidics to nanofluidics. Electrophoresis 42 (7–8), 834868.CrossRefGoogle ScholarPubMed
Arulanandam, S. & Li, D. 2000 Determining $\zeta$ potential and surface conductance by monitoring the current in electro-osmotic flow. J. Colloid Interface Sci. 225 (2), 421428.CrossRefGoogle ScholarPubMed
Baldessari, F. 2008 Electrokinetics in nanochannels: Part I. Electric double layer overlap and channel-to-well equilibrium. J. Colloid Interface Sci. 325 (2), 526538.CrossRefGoogle ScholarPubMed
Bandopadhyay, A., Tripathi, D. & Chakraborty, S. 2016 Electroosmosis-modulated peristaltic transport in microfluidic channels. Phys. Fluids 28 (5), 052002.CrossRefGoogle Scholar
Bazant, M. Z. & Squires, T. M. 2004 Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92 (6), 066101.CrossRefGoogle ScholarPubMed
Behrens, S. H. & Grier, D. G. 2001 The charge of glass and silica surfaces. J. Chem. Phys. 115 (14), 67166721.CrossRefGoogle Scholar
Brown, W., Kvetny, M., Yang, R. & Wang, G. 2021 Higher ion selectivity with lower energy usage promoted by electro-osmotic flow in the transport through conical nanopores. J. Phys. Chem. C 125 (6), 32693276.CrossRefGoogle Scholar
Burgreen, D. & Nakache, F. 1964 Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68 (5), 10841091.CrossRefGoogle Scholar
Chen, G. & Das, S. 2015 Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density. J. Appl. Phys. 117 (18), 185304.CrossRefGoogle Scholar
Chen, G. & Das, S. 2017 Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes. J. Phys. Chem. B 121 (14), 31303141.CrossRefGoogle ScholarPubMed
Das, S., Dubsky, P., van den Berg, A., & Eijkel, J.C.T. 2012 Concentration polarization in translocation of DNA through nanopores and nanochannels. Phys. Rev. Lett. 108 (13), 138101.CrossRefGoogle ScholarPubMed
Deng, D., Aouad, W., Braff, W. A., Schlumpberger, S., Suss, M. E. & Bazant, M. Z. 2015 Water purification by shock electrodialysis: deionization, filtration, separation, and disinfection. Desalination 357, 7783.CrossRefGoogle Scholar
Duan, M., Zhang, R., Chen, J. & Chen, G. 2024 Influence of salt, confinement and pH on surface ionization. Phys. Rev. Lett. (submitted).Google Scholar
Ghosal, S. 2004 Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis. Electrophoresis 25 (2), 214228.CrossRefGoogle ScholarPubMed
Haywood, D. G., Harms, Z. D. & Jacobson, S. C. 2014 Electroosmotic flow in nanofluidic channels. Anal. Chem. 86 (22), 1117411180.CrossRefGoogle ScholarPubMed
Huang, G., Willems, K., Soskine, M., Wloka, C. & Maglia, G. 2017 Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8 (1), 935.CrossRefGoogle ScholarPubMed
Hui, T. H., Kwan, K. W., Yip, T. T. C., Fong, H. W., Ngan, K. C., Yu, M., Yao, S., Ngan, A. H. W. & Lin, Y. 2016 Regulating the membrane transport activity and death of cells via electroosmotic manipulation. Biophys. J. 110 (12), 27692778.CrossRefGoogle ScholarPubMed
Hur, J. & Chung, A. J. 2021 Microfluidic and nanofluidic intracellular delivery. Adv. Sci. 8 (15), 2004595.CrossRefGoogle ScholarPubMed
Kounovsky-Shafer, K. L., et al. 2017 Electrostatic confinement and manipulation of DNA molecules for genome analysis. Proc. Natl Acad. Sci. USA 114 (51), 1340013405.CrossRefGoogle ScholarPubMed
Koyama, S., Inoue, D., Okada, A. & Yoshida, H. 2021 Electro-osmotic diode based on colloidal nano-valves between double membranes. Phys. Rev. Res. 3 (3), 033289.CrossRefGoogle Scholar
Li, J. & Li, D. 2019 Electroosmotic flow velocity in DNA modified nanochannels. J. Colloid Interface Sci. 553, 3139.CrossRefGoogle ScholarPubMed
Liu, B.-T., Tseng, S. & Hsu, J.-P. 2015 Analytical expressions for the electroosmotic flow in a charge-regulated circular channel. Electrochem. Commun. 54, 15.CrossRefGoogle Scholar
Manning, G. S. 1967 Model for electro-osmosis in fixed-charge systems. J. Chem. Phys. 46 (12), 49764980.CrossRefGoogle Scholar
Mueller, R., Kammler, H. K., Wegner, K. & Pratsinis, S. E. 2003 OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 19 (1), 160165.CrossRefGoogle Scholar
Peng, R. & Li, D. 2016 Electroosmotic flow in single PDMS nanochannels. Nanoscale 8 (24), 1223712246.CrossRefGoogle ScholarPubMed
Pennathur, S. & Santiago, J. G. 2005 Electrokinetic transport in nanochannels. 2. Experiments. Exp. Anal. Chem. 77 (21), 67826789.CrossRefGoogle Scholar
Picallo, C. B., Gravelle, S., Joly, L., Charlaix, E. & Bocquet, L. 2013 Nanofluidic osmotic diodes: theory and molecular dynamics simulations. Phys. Rev. Lett. 111 (24), 244501.CrossRefGoogle ScholarPubMed
Sadeghi, M., Saidi, M. H. & Sadeghi, A. 2017 Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel. Phys. Fluids 29 (6), 062002.CrossRefGoogle Scholar
Schmid, S., Stömmer, P., Dietz, H. & Dekker, C. 2021 Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nat. Nanotechnol. 16 (11), 12441250.CrossRefGoogle ScholarPubMed
Schoch, R. B., Han, J. & Renaud, P. 2008 Transport phenomena in nanofluidics. Rev. Mod. Phys. 80 (3), 839883.CrossRefGoogle Scholar
Sjöberg, S. 1996 Silica in aqueous environments. J. Non-Crystalline Solids 196, 5157.CrossRefGoogle Scholar
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.CrossRefGoogle Scholar
Stone, H., Stroock, A. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (1), 381411.CrossRefGoogle Scholar
Storey, B. D., Edwards, L. R., Kilic, M. S. & Bazant, M. Z. 2008 Steric effects on ac electro-osmosis in dilute electrolytes. Phys. Rev. E 77 (3), 036317.CrossRefGoogle ScholarPubMed
Trefalt, G., Behrens, S. H. & Borkovec, M. 2016 Charge regulation in the electrical double layer: ion adsorption and surface interactions. Langmuir 32 (2), 380400.CrossRefGoogle ScholarPubMed
van der, H., Frank, H., Bonthuis, D. J., Stein, D., Meyer, C. & Dekker, C. 2006 Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 6 (10), 22322237.CrossRefGoogle Scholar
Zhao, C. & Yang, C. 2012 Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid Nanofluid 13 (2), 179203.CrossRefGoogle Scholar