Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:44:28.503Z Has data issue: false hasContentIssue false

Multi-scale proper orthogonal decomposition of complex fluid flows

Published online by Cambridge University Press:  15 May 2019

M. A. Mendez*
Affiliation:
von Karman Institute for Fluid Dynamics, Environmental and Applied Fluid Dynamics Department, Rhode-St-Genèse, 1640, Belgium
M. Balabane
Affiliation:
Laboratoire Analyse, Géométrie et Applications, Université Paris 13, Villetaneuse, 93430, France
J.-M. Buchlin
Affiliation:
von Karman Institute for Fluid Dynamics, Environmental and Applied Fluid Dynamics Department, Rhode-St-Genèse, 1640, Belgium
*
Email address for correspondence: mendez@vki.ac.be

Abstract

Data-driven decompositions are becoming essential tools in fluid dynamics, allowing for tracking the evolution of coherent patterns in large datasets, and for constructing low-order models of complex phenomena. In this work, we analyse the main limits of two popular decompositions, namely the proper orthogonal decomposition (POD) and the dynamic mode decomposition (DMD), and we propose a novel decomposition which allows for enhanced feature detection capabilities. This novel decomposition is referred to as multi-scale proper orthogonal decomposition (mPOD) and combines multi-resolution analysis (MRA) with a standard POD. Using MRA, the mPOD splits the correlation matrix into the contribution of different scales, retaining non-overlapping portions of the correlation spectra; using the standard POD, the mPOD extracts the optimal basis from each scale. After introducing a matrix factorization framework for data-driven decompositions, the MRA is formulated via one- and two-dimensional filter banks for the dataset and the correlation matrix respectively. The validation of the mPOD, and a comparison with the discrete Fourier transform (DFT), DMD and POD are provided in three test cases. These include a synthetic test case, a numerical simulation of a nonlinear advection–diffusion problem and an experimental dataset obtained by the time-resolved particle image velocimetry (TR-PIV) of an impinging gas jet. For each of these examples, the decompositions are compared in terms of convergence, feature detection capabilities and time–frequency localization.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoranz, A., Ianiro, A., Flores, O. & Villalba, M. G. 2018 Extended proper orthogonal decomposition of non-homogeneous thermal fields in a turbulent pipe flow. Intl J. Heat Mass Transfer 118, 12641275.Google Scholar
Aubry, N. 1991 On the hidden beauty of the proper orthogonal decomposition. Theor. Comput. Fluid Dyn. 2 (5–6), 339352.Google Scholar
Aubry, N., Guyonnet, R. & Lima, R. 1991 Spatiotemporal analysis of complex signals: theory and applications. J. Stat. Phys. 64 (3–4), 683739.Google Scholar
Barrero-Gil, A., Pindado, S. & Avila, S. 2012 Extracting energy from vortex-induced vibrations: A parametric study. Appl. Math. Model. 36 (7), 31533160.Google Scholar
Bergmann, M. & Cordier, L. 2008 Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys. 227 (16), 78137840.Google Scholar
Berkooz, G. 1992 Observations on the proper orthogonal decomposition. In Studies in Turbulence, pp. 229247. Springer.Google Scholar
Berkooz, G., Elezgaray, J., Holmes, P., Lumley, J. & Poje, A. 1994 The proper orthogonal decomposition, wavelets and modal approaches to the dynamics of coherent structures. Appl. Sci. Res. 53 (3–4), 321338.Google Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.Google Scholar
Blanchard, R., Ng, W., Lowe, T. K. & Vandsburger, U. 2014 Simulating bluff-body flameholders: on the use of proper orthogonal decomposition for wake dynamics validation. Trans ASME J. Engng Gas Turbines Power 136 (12), 122603.Google Scholar
Borée, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35 (2), 188192.Google Scholar
Bourgeois, J. A., Noack, B. R. & Martinuzzi, R. J. 2013 Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake. J. Fluid Mech. 736, 316350.Google Scholar
Brockwell, P. J. & Davis, R. A. 1987 Time Series: Theory and Methods. Springer.Google Scholar
Brunton, S. L., Brunton, B. W., Proctor, J. L. & Kutz, J. N. 2016a Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLOS ONE 11 (2), e0150171.Google Scholar
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.Google Scholar
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016b Sparse identification of nonlinear dynamics with control (sindyc). IFAC-Papers OnLine 49 (18), 710715.Google Scholar
Buchlin, J.-M. 2011 Convective heat transfer in impinging gas jet arrangements. J. Appl. Fluid Mech. 4 (2), 137149.Google Scholar
Budišić, M., Mohr, R. & Mezić, I. 2012 Applied koopmanism. Chaos: An Interdisciplinary J. Nonlinear Sci. 22 (4), 047510.Google Scholar
Cammilleri, A., Gueniat, F., Carlier, J., Pastur, L., Memin, E., Lusseyran, F. & Artana, G. 2013 POD-spectral decomposition for fluid flow analysis and model reduction. Theor. Comput. Fluid Dyn. 27 (6), 787815.Google Scholar
del Castillo-Negrete, D., Spong, D. A. & Hirshman, S. P. 2008 Proper orthogonal decomposition methods for noise reduction in particle-based transport calculations. Phys. Plasmas 15 (9), 092308.Google Scholar
Charmiyan, M., Azimian, A. R., Shirani, E., Aloui, F., Degouet, C. & Michaelis, D. 2017 3D tomographic PIV, POD and vortex identification of turbulent slot jet flow impinging on a flat plate. J. Mech. Sci. Technol. 31 (11), 53475357.Google Scholar
Charru, F. & de Forcrand-Millard, P. 2009 Hydrodynamic Instabilities. Cambridge University Press.Google Scholar
Chatterjee, A. 2000 An introduction to the proper orthogonal decomposition. Curr. Sci. 78 (7), 808817.Google Scholar
Chen, K. K., Tu, J. H. & Rowley, C. W. 2012 Variants of dynamic mode decomposition: boundary condition, koopman, and fourier analyses. J. Nonlinear Sci. 22 (6), 887915.Google Scholar
Citriniti, J. H. & George, W. K. 2000 Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418, 137166.Google Scholar
Cordier, L. & Bergmann, M. 2013 Proper orthogonal decomposition: an overview. In Advanced Post-Processing of Experimental and Numerical Data (ed. David, L. & Schram, C.), von Karman Institute for Fluid Dynamics, VKI – LS 2.Google Scholar
Daubechies, I. 1992 Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics.Google Scholar
De Souza, F., Delville, J., Lewalle, J. & Bonnet, J. P. 1999 Large scale coherent structures in a turbulent boundary layer interacting with a cylinder wake. Exp. Therm. Fluid Sci. 19, 204213.Google Scholar
Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids (A/Fluid) 3 (10), 23372354.Google Scholar
Didden, N. & Ho, C.-M. 1985 Unsteady separation in a boundary layer produced by an impinging jet. J. Fluid Mech. 160, 235256.Google Scholar
Duriez, T., Brunton, S. L. & Noack, B. R. 2017 Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer International.Google Scholar
Duwig, C. & Iudiciani, P. 2009 Extended proper orthogonal decomposition for analysis of unsteady flames. Flow Turbul. Combust. 84 (1), 2547.Google Scholar
Erichson, N. B., Brunton, S. L. & Kutz, J. N.2017 Randomized dynamic mode decomposition. arXiv:1702.02912v1.Google Scholar
Fahl, M.2000 Trust-region methods for flow control based on reduced order modeling. PhD thesis, Université de Trier.Google Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24 (1), 395458.Google Scholar
Flór, J. B., van Heijst, G. J. F. & Delfos, R. 1995 Decay of dipolar vortex structures in a stratified fluid. Phys. Fluids 7 (2), 374383.Google Scholar
Folland, G. B. 2009 Fourier Analysis and its Applications, Pure and Applied Undergraduate Texts. American Mathematical Society.Google Scholar
George, W. K. 1988 Insight into the dynamics of coherent structures from a proper orthogonal decomposition. In Near Wall Turbulence (ed. Kline, S. et al. ), Hemisphere.Google Scholar
Glauser, M. N., Leib, S. J. & George, W. K. 1987 Coherent structures in the axisymmetric turbulent jet mixing layer. In Turbulent Shear Flows 5, pp. 134145. Springer.Google Scholar
Glezer, A., Kadioglu, Z. & Pearlstein, A. J. 1989 Development of an extended proper orthogonal decomposition and its application to a time periodically forced plane mixing layer. Phys. Fluids (A/Fluid) 1 (8), 13631373.Google Scholar
Golub, G. H. 2013 Matrix Computations. J. Hopkins University Press.Google Scholar
Gonzalez, R. C. & Woods, R. E. 2007 Digital Image Processing, 3rd edn. Pearson.Google Scholar
Gordeyev, S. V. & Thomas, F. O. 2000 Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid Mech. 414, 145194.Google Scholar
Gray, R. M. 2005 Toeplitz and circulant matrices: a review. Foundations and Trends® in Communications and Information Theory, vol. 2(3), pp. 155239. Now.Google Scholar
Grenander, U. 2001 Toeplitz Forms and Their Applications. American Mathematical Society.Google Scholar
Grinstein, F. F. & Devore, C. R. 1996 Dynamics of coherent structures and transition to turbulence in free square jets. Phys. Fluids 8 (5), 12371251.Google Scholar
Grosek, J. & Kutz, J. N.2014 Dynamic mode decomposition for real-time background/foreground separation in video. arXiv:1404.7592v1.Google Scholar
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.Google Scholar
Gustafsson, F. 1996 Determining the initial states in forward-backward filtering. IEEE Trans. Signal Process. 44 (4), 988992.Google Scholar
Gutmark, E., Wolfshtein, M. & Wygnanski, I. 1978 The plane turbulent impinging jet. J. Fluid Mech. 88 (04), 737.Google Scholar
Hadžiabdic̀, M. & Hanjalic̀, K. 2008 Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221260.Google Scholar
Hammad, K. J. & Milanovic, I. M. 2009 A POD study of an impinging jet flowfield. In Volume 1: Symposia, Parts A, B and C. ASME.Google Scholar
Harris, F. J. 1978 On the use of windows for harmonic analysis with the discrete fourier transform. Proc. IEEE 66 (1), 5183.Google Scholar
Hayes, M. H. 2011 Schaums Outline of Digital Signal Processing. McGraw-Hill Education Ltd.Google Scholar
Hoffmann, K. A. & Chiang, S. T. 1993 Computational Fluid Dynamics for Engineers. Engineering Education System.Google Scholar
Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.Google Scholar
Holmes, P. J., Lumley, J. L., Berkooz, G., Mattingly, J. C. & Wittenberg, R. W. 1997 Low-dimensional models of coherent structures in turbulence. Phys. Rep. 287 (4), 337384.Google Scholar
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.Google Scholar
Jackson, J. E. 1991 A User’s Guide to Principal Components. Wiley-Interscience.Google Scholar
Jovanović, M. R., Schmid, P. J. & Nichols, J. W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 024103.Google Scholar
Kaiser, G. 2010 A Friendly Guide to Wavelets. Springer.Google Scholar
Kim, K. C., Min, Y. U., Oh, S. J., An, N. H., Seoudi, B., Chun, H. H. & Lee, I. 2007 Time-resolved PIV investigation on the unsteadiness of a low Reynolds number confined impinging jet. J. Vis. 10 (4), 367379.Google Scholar
Koopman, B. O. 1931 Hamiltonian systems and transformation in hilbert space. Proc. Natl Acad. Sci. 17 (5), 315318.Google Scholar
Kuhn, S., Kenjereš, S. & von Rohr, P. R. 2010 Large eddy simulations of wall heat transfer and coherent structures in mixed convection over a wavy wall. Intl J. Therm. Sci. 49 (7), 12091226.Google Scholar
Kunisch, K. & Volkwein, S. 1999 Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theor. Applics. 102 (2), 345371.Google Scholar
Kutz, J. N. 2013 Data-Driven Modeling & Scientific Computation. Oxford University Press.Google Scholar
Kutz, J. N., Brunton, S. L., Brunton, B. W. & Proctor, J. L. 2016a Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM-Society for Industrial and Applied Mathematics.Google Scholar
Kutz, J. N., Fu, X. & Brunton, S. L. 2016b Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 15 (2), 713735.Google Scholar
Loève, M. 1977 Probability Theory I. Springer.Google Scholar
Loiseau, J.-C., Noack, B. R. & Brunton, S. L. 2018 Sparse reduced-order modelling: sensor-based dynamics to full-state estimation. J. Fluid Mech. 844, 459490.Google Scholar
Lumley, J. L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 166178. Nauka.Google Scholar
Lumley, J. L. 1970 Stochastic Tools in Turbulence. Dover.Google Scholar
Mallat, S. G. 1989 A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11 (7), 674693.Google Scholar
Mallat, S. G. 2009 A Wavelet Tour of Signal Processing. Elsevier.Google Scholar
Mallor, F., Vila, C. S., Ianiro, A. & Discetti, S. 2018 Wall-mounted perforated cubes in a boundary layer: local heat transfer enhancement and control. Intl J. Heat Mass Transfer 117, 498507.Google Scholar
Mariotti, A., Legras, B. & Dritschel, D. G. 1994 Vortex stripping and the erosion of coherent structures in two-dimensional flows. Phys. Fluids 6 (12), 39543962.Google Scholar
Matlab 2017 Signal Processing Toolbox. The MathWorks.Google Scholar
Maurel, S., Borée, J. & Lumley, J. L. 2001 Extended proper orthogonal decomposition: application to jet/vortex interaction. Flow Turbul. Combust. 67 (2), 125136.Google Scholar
Melnikov, K., Kreilos, T. & Eckhardt, B. 2014 Long-wavelength instability of coherent structures in plane couette flow. Phys. Rev. E 89, 043008.Google Scholar
Mendez, M. A., Balabane, M. & Buchlin, J.-M. 2018a Multi-scale proper orthogonal decomposition (mPOD). In AIP Conference Proceedings. vol. 1978, 060018, AIP.Google Scholar
Mendez, M. A., Raiola, M., Masullo, A., Discetti, S., Ianiro, A., Theunissen, R. & Buchlin, J.-M. 2017 POD-based background removal for particle image velocimetry. Exp. Therm. Fluid Sci. 80, 181192.Google Scholar
Mendez, M. A., Scelzo, M. T. & Buchlin, J.-M. 2018b Multiscale modal analysis of an oscillating impinging gas jet. Exp. Therm. Fluid Sci. 91, 256276.Google Scholar
Mezić, I. 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41 (1–3), 309325.Google Scholar
Mezić, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45 (1), 357378.Google Scholar
Miranda, A. A., Borgne, Y.-A. & Le Bontempi, G. 2008 New routes from minimal approximation error to principal components. Neural Proc. Lett. 27 (3), 197207.Google Scholar
Mladin, E.-C. & Zumbrunnen, D. A. 2000 Alterations to coherent flow structures and heat transfer due to pulsations in an impinging air-jet. Intl J. Therm. Sci. 39 (2), 236248.Google Scholar
Mumford, J. C. 1982 The structure of the large eddies in fully developed turbulent shear flows. Part 1. The plane jet. J. Fluid Mech. 118, 241268.Google Scholar
Nagarajan, K. K., Singha, S., Cordier, L. & Airiau, C. 2018 Open-loop control of cavity noise using proper orthogonal decomposition reduced-order model. Comput. Fluids 160, 113.Google Scholar
Noack, B. R. 2016 From snapshots to modal expansions – bridging low residuals and pure frequencies. J. Fluid Mech. 802, 14.Google Scholar
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.Google Scholar
Noack, B. R., Stankiewicz, W., Morzyński, M. & Schmid, P. J. 2016 Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 809, 843872.Google Scholar
Oliver, N. M., Rosario, B. & Pentland, A. P. 2000 A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22 (8), 831843.Google Scholar
Oppenheim, A. V. & Schafer, R. W. 2009 Discrete-Time Signal Processing [With Access Code]. Addison–Wesley.Google Scholar
Picard, C. & Delville, J. 2000 Pressure velocity coupling in a subsonic round jet. Intl J. Heat Fluid Flow 21 (3), 359364.Google Scholar
Pieris, S., Zhang, X., Yarusevych, S. & Peterson, S. D. 2017 Evolution of coherent structures in a two-dimensional impinging jet. In 10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, pp. 8994.Google Scholar
Pollard, A., Castillo, L., Danaila, L. & Glauser, M.(Eds) 2017 Whither Turbulence and Big Data in the 21st Century? Springer International.Google Scholar
Rahmanian, M., Cheng, L., Zhao, M. & Zhou, T. 2014 Vortex induced vibration and vortex shedding characteristics of two side-by-side circular cylinders of different diameters in close proximity in steady flow. J. Fluids Struct. 48, 260279.Google Scholar
Rinoshika, A. & Zhou, Y. 2005 Orthogonal wavelet multi-resolution analysis of a turbulent cylinder wake. J. Fluid Mech. 524, 229248.Google Scholar
Rowley, C. W. & Dawson, S. T. M. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49 (1), 387417.Google Scholar
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.Google Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.Google Scholar
Schmid, P. J. & Brandt, L. 2014 Analysis of fluid systems: stability, receptivity, Sensitivity Lecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, stockholm, sweden, 2013. Appl. Mech. Rev. 66 (2), 021003.Google Scholar
Schneider, K. & Vasilyev, O. V. 2010 Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42 (1), 473503.Google Scholar
Schrijer, F. F. J., Sciacchitano, A. & Scarano, F. 2014 Spatio-temporal and modal analysis of unsteady fluctuations in a high-subsonic base flow. Phys. Fluids 26 (8), 086101.Google Scholar
Shukla, K. K. & Tiwari, A. K. 2013 Efficient Algorithms for Discrete Wavelet Transform. Springer.Google Scholar
Sieber, M., Paschereit, C. O. & Oberleithner, K. 2016 Spectral proper orthogonal decomposition. J. Fluid Mech. 792, 798828.Google Scholar
Sieber, M., Paschereit, C. O. & Oberleithner, K.2017 On the nature of spectral proper orthogonal decomposition and related modal decompositions. arXiv:1712.08054v1.Google Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part I. Coherent structures. Q. Appl. Maths 45 (3), 561571.Google Scholar
Sirovich, L. 1989 Chaotic dynamics of coherent structures. Physica D 37 (1), 126145.Google Scholar
Sirovich, L. 1991 Analysis of turbulent flows by means of the empirical eigenfunctions. Fluid Dyn. Res. 8, 85100.Google Scholar
Sobral, A., Javed, S., Jung, S. K., Bouwmans, T. & Zahzah, E. 2015 Online stochastic tensor decomposition for background subtraction in multispectral video sequences. In 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), IEEE.Google Scholar
Specht, E. 2014 Impinging jet drying. In Modern Drying Technology, Process Intensification (ed. Tsotsas, E. & Mujumdar, A. S.), vol. 5, chap. 1, pp. 126. Wiley-VCH.Google Scholar
Stewart, G. W. 1993 On the early history of the singular value decomposition. SIAM Rev. 35 (4), 551566.Google Scholar
Strang, G. & Nguyen, T. 1996 Wavelets and Filter Banks. Wellesley-Cambridge Press.Google Scholar
Suresh, P. R., Srinivasan, K., Sundararajan, T. & Das, S. K. 2008 Reynolds number dependence of plane jet development in the transitional regime. Phys. Fluids 20 (4), 044105.Google Scholar
Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.Google Scholar
Thielicke, W. & Stamhuis, E. J. 2014 PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30.Google Scholar
Thomas, F. O. & Goldschmidt, V. W. 1986 Structural characteristics of a developing turbulent planar jet. J. Fluid Mech. 163 (1), 227.Google Scholar
Towne, A., Schmidt, O. T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.Google Scholar
Trieling, R. R., van Wsenbeeck, J. M. A. & van Heijst, G. J. F. 1998 Dipolar vortices in a strain flow. Phys. Fluids 10 (1), 144159.Google Scholar
Tu, J., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. & Kutz, J. N. 2014 On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1 (2), 391421.Google Scholar
Vaidyanathanm, P. P. 1992 Multirate Systems and Filter Banks. Prentice Hall.Google Scholar
Venturi, D. & Karniadakis, G. E. M. 2004 Gappy data and reconstruction procedures for flow past a cylinder. J. Fluid Mech. 519, 315336.Google Scholar
Volkwein, S. 2013 Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. University of Konstanz, Department of Mathematics and Statistics.Google Scholar
Welch, P. 1967 The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.Google Scholar
Willcox, K. 2006 Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids 35 (2), 208226.Google Scholar
Zuckerman, N. & Lior, N. 2006 Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv. Heat Transfer 39, 565631.Google Scholar

Mendez et al. supplementary movie 1

Animation of the synthetic test case 1 described in section 5. This simple dataset consists of three modes having equal energy but a different spatial location and temporal evolution. Despite its basic form, this test case is sufficient to challenge standard decompositions such as DMD, POD, and DFT. The mPOD naturally distinguish the introduced modes.

Download Mendez et al. supplementary movie 1(Video)
Video 339.3 KB

Mendez et al. supplementary movie 2

Animation of the second dataset considered, discussed in Section 6. This is a numerical simulation of a nonlinear advection-diffusion problem featuring coherent and random sources, together with random noise. This poses serious problems to the DMD, and yield severe spectral mixing to the POD. The proposed mPOD correctly identifies all the sources introduced.

Download Mendez et al. supplementary movie 2(Video)
Video 7.6 MB

Mendez et al. supplementary movie 3

Animation of the third dataset considered, discussed in Section 7. This is an experimental characterization via TR-PIV of an impinging jet in transitional conditions. Although the dataset is stationary, the presence of periodic phenomena at largely different frequencies in different portions of the flow domain yields poor convergence of the DMD and spectral-mixing for the POD. The proposed mPOD avoids both limitations.

Download Mendez et al. supplementary movie 3(Video)
Video 11.9 MB