Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T03:07:04.292Z Has data issue: false hasContentIssue false

Multi-oscillations of a bubble in a compressible liquid near a rigid boundary

Published online by Cambridge University Press:  24 March 2014

Qianxi Wang*
Affiliation:
School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
*
Email address for correspondence: Q.X.Wang@bham.ac.uk

Abstract

Bubble dynamics near a rigid boundary are associated with wide and important applications in cavitation erosion in many industrial systems and medical ultrasonics. This classical problem is revisited with the following two developments. Firstly, computational studies on the problem have commonly been based on an incompressible fluid model, but the compressible effects are essential in this phenomenon. Consequently, a bubble usually undergoes significantly damped oscillation in practice. In this paper this phenomenon will be modelled using weakly compressible theory and a modified boundary integral method for an axisymmetric configuration, which predicts the damped oscillation. Secondly, the computational studies so far have largely been concerned with the first cycle of oscillation. However, a bubble usually oscillates for a few cycles before it breaks into much smaller ones. Cavitation erosion may be associated with the recollapse phase when the bubble is initiated more than the maximum bubble radius away from the boundary. Both the first and second cycles of oscillation will be modelled. The toroidal bubble formed towards the end of the collapse phase is modelled using a vortex ring model. The repeated topological changes of the bubble are traced from a singly connected to a doubly connected form, and vice versa. This model considers the energy loss due to shock waves emitted at minimum bubble volumes during the beginning of the expansion phase and around the end of the collapse phase. It predicts damped oscillations, where both the maximum bubble radius and the oscillation period reduce significantly from the first to second cycles of oscillation. The damping of the bubble oscillation is alleviated by the existence of the rigid boundary and reduces with the standoff distance between them. Our computations correlate well with the experimental data (Philipp & Lauterborn, J. Fluid Mech., vol. 361, 1998, pp. 75–116) for both the first and second cycles of oscillation. We have successively reproduced the bubble ring in direct contact with the rigid boundary at the end of the second collapse phase, a phenomenon that was suggested to be one of the major causes of cavitation erosion by experimental studies.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adoua, R., Legendre, D. & Magnaudet, J. 2009 Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow. J. Fluid Mech. 628, 2341.CrossRefGoogle Scholar
Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.Google Scholar
Best, J. P. 1993 The formation of toroidal bubbles upon collapse of transient cavities. J. Fluid Mech. 251, 79107.Google Scholar
Best, J. P. 1994 The rebound of toroidal bubbles. In Bubble Dynamics and Interface Phenomena (ed. Blake, J. R., Boulton-Stone, J. M. & Thomas, N. H.), pp. 405412. Kluwer.Google Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.CrossRefGoogle Scholar
Blake, J. R., Hooton, M. C., Robinson, P. B. & Tong, P. R. 1997 Collapsing cavities, toroidal bubbles and jet impact. Phil. Trans. R. Soc. Lond. A 355, 537550.Google Scholar
Blake, J. R., Taib, B. B. & Doherty, G. 1986 Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479497.Google Scholar
Blake, J. R., Taib, B. B. & Doherty, G. 1987 Transient cavities near boundaries. Part 2. Free surface. J. Fluid Mech. 181, 197212.Google Scholar
Bonhomme, R., Magnaudet, J., Duval, F. & Piar, B. 2012 Inertial dynamics of air bubbles crossing a horizontal fluid–fluid interface. J. Fluid Mech. 707, 405443.Google Scholar
Bonometti, T. & Magnaudet, J. 2007 An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics. Intl J. Multiphase Flow 33 (2), 109133.CrossRefGoogle Scholar
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.Google Scholar
Brujan, E. A., Keen, G. S., Vogel, A. & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14 (1), 8592.CrossRefGoogle Scholar
Brujan, E. A. & Matsumoto, Y. 2012 Collapse of micrometre-sized cavitation bubbles near a rigid boundary. Microfluid. Nanofluid. 13, 957966.Google Scholar
Brujan, E. A., Nahen, K., Schmidt, P. & Vogel, A. 2001 Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J. Fluid Mech. 433, 283314.Google Scholar
Calvisi, M. L., Iloreta, J. I. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave: II. Reflected shock intensifies non-spherical cavitation collapse. J. Fluid Mech. 616, 6397.Google Scholar
Chahine, G. L. & Bovis, A. 1980 Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface. In Cavitation and Inhomogeneities in Underwater Acoustics pp. 2329. Springer.Google Scholar
Chahine, G. L. & Harris, G.1988a Multi-cycle underwater explosion bubble model. Part I: Theory and validation examples for free-field bubble problems. Report IHCR 98-64. US Naval Surface Warfare Center, Indian Head Division.Google Scholar
Chahine, G. L. & Harris, G.1988b Multi-cycle underwater explosion bubble model. Part II: Validation examples for hull girder whipping problems. Report IHCR 98-65. US Naval Surface Warfare Center, Indian Head Division.Google Scholar
Chahine, G. L. & Perdue, T. O.1988 Simulation of the three-dimensional behaviour of an unsteady large bubble near a structure. In Proc. 3rd Intl Colloq. on Drops and Bubbles, Monterey, CA.Google Scholar
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.Google Scholar
Coussios, C. C. & Roy, R. A. 2007 Applications of acoustics and cavitation to non-invasive therapy and drug delivery. Annu. Rev. Fluid Mech. 40, 395420.CrossRefGoogle Scholar
Curtiss, G. A., Leppinen, D. M., Wang, Q. X. & Blake, J. R. 2013 Ultrasonic cavitation near a tissue layer. J. Fluid Mech. 730, 245272.Google Scholar
Delius, M. 1990 Effect of lithotripter shock waves on tissues and materials. In Proc. 12th ISNA: Frontiers of Nonlinear Acoustics (ed. Hamilton, M. F. & Blackstock, D. T.), pp. 3146. Elsevier.Google Scholar
Duncan, J. H., Milligan, C. D. & Zhang, S. G. 1996 On the interaction between a bubble and a submerged compliant structure. J. Sound Vib. 197 (1), 1744.Google Scholar
Duncan, J. H. & Zhang, S. G. 1993 On the interaction of a collapsing cavity and a compliant wall. J. Fluid Mech. 226, 401423.Google Scholar
Feng, Z. C. & Leal, L. G. 1997 Nonlinear bubble dynamics. Annu. Rev. Fluid Mech. 29, 201243.Google Scholar
Geers, T. L. & Hunter, K. S. 2002 An integrated wave-effects model for an underwater explosion bubble. J. Acoust. Soc. Am. 111, 15841601.Google Scholar
Geers, T. L., Lagumbay, R. S. & Vasilyev, O. V. 2012 Acoustic-wave effects in violent bubble collapse. J. Appl. Phys. 112, 054910.Google Scholar
Geers, T. L. & Zhang, P. 1994 Doubly asymptotic approximations for submerged structures with internal fluid volumes. Trans. ASME: J. Appl. Mech. 61, 893906.Google Scholar
Guerri, L., Lucca, G. & Prosperetti, A. 1981 A numerical method for the dynamics of non-spherical cavitation bubbles. In Proc. 2nd Int. Colloq. on Drops and Bubbles, California NASA JPL Publications 82-7, p. 175California Institute of Technology.Google Scholar
Herring, C.1941 The theory of the pulsations of the gas bubbles produced by an underwater explosion. Report. US National Defense Research Committee.Google Scholar
Hua, J. & Lou, J. 2007 Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 222 (2), 769795.Google Scholar
Hung, C. F. & Hwangfu, J. J. 2010 Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries. J. Fluid Mech. 651, 5580.Google Scholar
Iloreta, J. I., Fung, N. M. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave: I. Consequences of interference between incident and reflected waves. J. Fluid Mech. 616, 4361.Google Scholar
Jayaprakash, A., Chao-Tsung, H. & Chahine, G. 2010 Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall. J. Fluids Engng 134 (3), 031301.Google Scholar
Jayaprakash, A., Singh, S. & Chahine, G. 2011 Experimental and numerical investigation of single bubble dynamics in a two-phase bubbly medium. J. Fluids Engng 133, 121305.Google Scholar
Johnsen, E. & Colonius, T. 2008 Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124, 20112020.CrossRefGoogle ScholarPubMed
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Keller, J. B. & Kolodner, I. I. 1956 Damping of underwater explosion bubble oscillations. J. Appl. Phys. 27 (10), 11521161.Google Scholar
Kornfeld, M. & Suvorov, L. 1944 On the destructive action of cavitation. J. Appl. Phys. 15, 495506.Google Scholar
Klaseboer, E., Fong, S. W., Turangan, C. K., Khoo, B. C., Szeri, A. J., Calvisi, M. L., Sankin, G. N. & Zhong, P. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 3356.Google Scholar
Klaseboer, E., Hung, K. C., Wang, C., Wang, C. W., Khoo, B. C., Boyce, P., Debono, S. & Charlier, H. 2005 Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. Fluid Mech. 537, 387413.Google Scholar
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391399.Google Scholar
Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501.Google Scholar
Lauterborn, W. & Ohl, C. D. 1997 Cavitation bubble dynamics. Ultrason. Sonochem. 4, 6575.Google Scholar
Lauterborn, W. & Vogel, A. 2013 Shock wave emission by laser generated bubbles. In Bubble Dynamics and Shock Waves (ed. Delale, C. F.), pp. 67103. Springer.Google Scholar
Lee, M., Klaseboer, E. & Khoo, B. C. 2007 On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407429.Google Scholar
Leighton, T. 1994 The Acoustic Bubble. Academic Press.Google Scholar
Lenoir, M. 1979 A calculation of the parameters of the high-speed jet formed in the collapse of a bubble. J. Appl. Mech. Tech. Phys. 20 (3), 333337.Google Scholar
Leslie, T. A. & Kennedy, J. E. 2006 High-intensity focused ultrasound principles, current uses, and potential for the future. Ultrasound Q. 22, 263272.Google Scholar
Lezzi, A. & Prosperetti, A. 1987 Bubble dynamics in a compressible liquid. Part. 2. Second-order theory. J. Fluid Mech. 185, 289321.CrossRefGoogle Scholar
Lind, S. J. & Phillips, T. N. 2012 The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary. Theor. Comput. Fluid Dyn. 26 (1–4), 245277.Google Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.Google Scholar
Lundgren, T. S. & Mansour, N. N. 1991 Vortex ring bubbles. J. Fluid Mech. 72, 391399.Google Scholar
Minsier, V., De Wilde, J. & Proost, J. 2009 Simulation of the effect of viscosity on jet penetration into a single cavitating bubble. J. Appl. Phys. 106, 084906.Google Scholar
Naudé, C. F. & Ellis, A. T. 1961 On the mechanism of cavitation damage by non hemispherical cavities collapsing in contact with a solid boundary. Trans. ASME D: J. Basic Engng 83, 648656.Google Scholar
Pearson, A., Blake, J. R. & Otto, S. R. 2004 Jets in bubbles. J. Engng Maths 48 (3–4), 391412.Google Scholar
Pedley, T. J. 1968 The toroidal bubble. J. Fluid Mech. 32, 97112.Google Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.Google Scholar
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283290.Google Scholar
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.Google Scholar
Popinet, S. & Zaleski, S. 2002 Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137163.Google Scholar
Prosperetti, A. & Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part. 1. First-order theory. J. Fluid Mech. 168, 457478.Google Scholar
Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.Google Scholar
Roberts, W. W., Hall, T. L., Ives, K., Wolf, J. S., Fowlkes, J. B. & Cain, C. A. 2006 Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J. Urol. 175, 734738.Google Scholar
Shima, A., Takayama, K., Tomita, Y. & Miura, N. 1981 An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse. Acustica 48, 293301.Google Scholar
Song, W. D., Hong, M. H., Luk’yanchuk, B. & Chong, T. C. 2004 Laser-induced cavitation bubbles for cleaning of solid surfaces. J. Appl. Phys. 95 (6), 2952.Google Scholar
Szeri, A. J., Storey, B. D., Pearson, A. & Blake, J. R. 2003 Heat and mass transfer during the violent collapse of nonspherical bubbles. Phys. Fluids 15, 25762586.Google Scholar
Taib, B. B.1985 Boundary integral method applied to cavitation bubble dynamics. PhD thesis, University of Wollonggong.Google Scholar
Taylor, G. I. 1942 Vertical motion of a spherical bubble and the pressure surrounding it. In Underwater Explosion Research vol. 2, pp. 131144. Office of Naval Research.Google Scholar
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.Google Scholar
Turangan, C. K., Jamaluddin, A. R., Ball, G. J. & Leighton, T. G. 2008 Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J. Fluid Mech. 598, 125.Google Scholar
Van Dyke, M. D. 1975 Perturbation Methods in Fluid Mechanics. 2nd edn. Parabolic Press.Google Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.Google Scholar
Vogel, A., Schweiger, P., Frieser, A., Asiyo, M. & Birngruber, R. 1990 Intraocular Nd:YAG laser surgery: damage mechanism, damage range and reduction of collateral effects. IEEE J. Quantum Electron. 26, 22402260.CrossRefGoogle Scholar
Wang, Q. X. 1998 The numerical analyses of the evolution of a gas bubble near an inclined wall. Theor. Comput. Fluid Dyn. 12, 2951.Google Scholar
Wang, Q. X. 2004 Numerical modelling of violent bubble motion. Phys. Fluids 16 (5), 16101619.Google Scholar
Wang, Q. X. 2013 Underwater explosion bubble dynamics in a compressible liquid. Phys. Fluids 25, 072104.Google Scholar
Wang, Q. X. & Blake, J. R. 2010 Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech. 659, 191224.Google Scholar
Wang, Q. X. & Blake, J. R. 2011 Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave. J. Fluid Mech. 679, 559581.Google Scholar
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996a Nonlinear interaction between gas bubble and free surface. Comput. Fluids 25 (7), 607628.Google Scholar
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996b Strong interaction between buoyancy bubble and free surface. Theor. Comput. Fluid Dyn. 8, 7388.Google Scholar
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 2005 Vortex ring modelling for toroidal bubbles. Theor. Comput. Fluid Dyn. 19 (5), 303317.Google Scholar
Wang, S. P., Zhang, A., Liu, Y. L. & Zeng, D. R. 2013 Numerical simulation of bubble dynamics in an elastic vessel. Eur. Phys. J. E 36, 119.Google Scholar
Wardlaw, A. Jr. & Luton, J. A. 2000 Fluid–structure interaction for close-in explosions. Shock Vib. J. 7, 265275.Google Scholar
Wardlaw, A. Jr., Luton, J. A., Renzi, J. J. & Kiddy, K. 2003a Fluid–structure coupling methodology for undersea weapons. In Fluid Structure Interaction II pp. 251263. WIT Press.Google Scholar
Wardlaw, A. B., Luton, J. A., Renzi, J. R., Kiddy, K. C. & McKeown, R. M.2003b The Gemini Euler solver for the coupled simulation of underwater explosions. NSWCIHD/IHTR-2500.Google Scholar
Yang, B. & Prosperetti, A. 2008 Vapour bubble collapse in isothermal and non-isothermal liquids. J. Fluid Mech. 601, 253279.Google Scholar
Yang, Y. X., Wang, Q. X. & Keat, T. S. 2013 Dynamic features of a laser-induced cavitation bubble near a solid boundary. Ultrason. Sonochem. 20, 10981103.Google Scholar
Yoon, S. S. & Heister, S. D. 2004 Analytical formulas for the velocity field induced by an infinitely thin vortex ring. Int. J. Numer. Methods Fluids 44, 665672.Google Scholar
Yu, P. W., Ceccio, S. L. & Tryggvason, G. 1995 The collapse of a cavitation bubble in shear flows – a numerical study. Phys. Fluids 7 (11), 26082616.Google Scholar
Yue, P., Feng, J. J., Bertelo, C. A. & Hu, H. H. 2007 An arbitrary Lagrangian–Eulerian method for simulating bubble growth in polymer foaming. J. Comput. Phys. 226 (2), 22292249.Google Scholar
Young, F. R. 1989 Cavitation. McGraw-Hill.Google Scholar
Zhang, S. G. & Duncan, J. H. 1994 On the non-spherical collapse and rebound of a cavitation bubble. Phys. Fluids 6 (7), 23522362.Google Scholar
Zhang, S. G., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.Google Scholar