Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T09:01:24.809Z Has data issue: false hasContentIssue false

Monopoles in a uniform zonal flow on a quasi-geostrophic $\beta $-plane: effects of the Galilean non-invariance of the rotating shallow-water equations

Published online by Cambridge University Press:  31 December 2020

Sergey Kravtsov*
Affiliation:
Department of Mathematical Sciences, Atmospheric Sciences group, University of Wisconsin, P. O. Box 413, Milwaukee, WI53217, USA Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, 117997, Russia
Gregory Reznik
Affiliation:
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, 117997, Russia
*
 Email address for correspondence: kravtsov@uwm.edu

Abstract

Galilean non-invariance of the shallow-water equations describing the motion of a rotating fluid implies that a homogeneous background flow modifies the dynamics of localized vortices even without the $\beta $-effect. In particular, in a divergent quasi-geostrophic model on a $\beta $-plane, which originates from the shallow-water model, the equation of motion in the reference frame attached to a uniform zonal background flow has the same form as in the absence of this flow, but with a modified $\beta $-parameter depending linearly on the flow velocity $\bar{U}$. The evolution of a singular vortex (SV) embedded in such a flow consists of two stages. In the first, quasi-linear stage, the SV motion is induced by the secondary dipole ($\beta $-gyres) generated in the neighbourhood of the SV. During the next, nonlinear stage, the SV merges with the $\beta $-gyre of opposite sign to form a compact vortex pair interacting with far-field Rossby waves radiated previously by the SV, while the other $\beta $-gyre loses connection with the SV and disappears. In the absolute reference frame and with $\beta = 0$, the SV drifts downstream and at an angle to the background flow. The SV always lags behind the background flow, with the strongest resistance during the quasi-linear stage and weakening resistance at the nonlinear stage of SV evolution. In the general case where $\beta \gt 0$, the SV can move both upstream (for small-to-moderate $\bar{U} \gt 0$) and downstream (for $\bar{U} \lt 0$ or sufficiently large $\bar{U} \gt 0$). Under weak-to-moderate westward and all eastward flows the SV cyclone (anticyclone) also moves northward (southward), its meridional drift increasing with $\bar{U}$.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, A. 1966 Computational design for long-term numerical integrations of the equations of atmospheric motion. J. Comput. Phys. 1, 119143.10.1016/0021-9991(66)90015-5CrossRefGoogle Scholar
Carnevale, G. F., Kloosterziel, R. C. & van Heijst, G. J. F. 1991 Propagation of barotropic vortices over topography in a rotating tank. J. Fluid Mech. 233, 119139.10.1017/S0022112091000411CrossRefGoogle Scholar
Dowling, T. E. 2020 Jupiter-style jet stability. Planet. Sci. J. 1, 6.10.3847/PSJ/ab789dCrossRefGoogle Scholar
Early, J. J., Samelson, R. M. & Chelton, D. B. 2011 The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr. 41, 15351554.10.1175/2011JPO4601.1CrossRefGoogle Scholar
Flierl, G. R., Morrison, P. G. & Swaminathan, R. V. 2019 Jovian vortices and jets. Fluids 4 (2), 104.10.3390/fluids4020104CrossRefGoogle Scholar
Gilet, J. B., Plu, M. & Riviere, G. 2009 Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet. J. Atmos. Sci. 66, 30213041.10.1175/2009JAS3086.1CrossRefGoogle Scholar
Ingersoll, A. P. & Cuong, P. G. 1981 Numerical model of long-lived Jovian vortices. J. Atmos. Sci. 38, 20672076.10.1175/1520-0469(1981)038<2067:NMOLLJ>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kravtsov, S. & Reznik, G. M. 2019 Numerical solutions of the singular vortex problem. Phys. Fluids 31, 066602.10.1063/1.5099896CrossRefGoogle Scholar
Lam, J. S. & Dritschel, D. G. 2001 On the beta-drift of an initially circular vortex patch. J. Fluid Mech. 436, 107129.Google Scholar
Llewellyn Smith, S. G. 1997 The motion of a non-isolated vortex on the beta-plane. J. Fluid Mech. 346, 149179.10.1017/S0022112097006290CrossRefGoogle Scholar
Marcus, P. S. & Shetty, S. 2011 Jupiter's zonal winds: are they bands of homogenized potential vorticity organized as a monotonic staircase? Phil. Trans. R. Soc. A 369, 771795.10.1098/rsta.2010.0299CrossRefGoogle ScholarPubMed
Marshall, J. & Molteni, F. 1993 Toward a dynamical understanding of planetary-scale flow regimes. J. Atmos. Sci. 50, 17921818.10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
McWilliams, J. C. 1977 A note on a consistent quasi-geostrophic model in a multiply connected domain. Dyn. Atmos. Oceans 1, 427441.10.1016/0377-0265(77)90002-1CrossRefGoogle Scholar
Orlanski, I. 1998 Poleward deflection of storm tracks. J. Atmos. Sci. 55, 25772602.10.1175/1520-0469(1998)055<2577:PDOST>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Oruba, L., Lapeyre, G. & Riviere, G. 2012 On the northward motion of midlatitude cyclones in a barotropic meandering jet. J. Atmos. Sci. 69, 17931810.10.1175/JAS-D-11-0267.1CrossRefGoogle Scholar
Oruba, L., Lapeyre, G. & Riviere, G. 2013 On the poleward motion of midlatitude cyclones in a baroclinic meandering jet. J. Atmos. Sci. 70, 26292649.10.1175/JAS-D-12-0341.1CrossRefGoogle Scholar
Pedlosky, J. 1979 Geophysical Fluid Dynamics, 624 p. Springer.10.1007/978-1-4684-0071-7CrossRefGoogle Scholar
Reznik, G. M. 1992 Dynamics of singular vortices on a β-plane. J. Fluid Mech. 240, 405432.10.1017/S0022112092000144CrossRefGoogle Scholar
Reznik, G. M. 2010 Dynamics of localized vortices on the beta plane. Izvestiya, Atm. Ocean. Phys. 46 (6), 784797.10.1134/S0001433810060095CrossRefGoogle Scholar
Reznik, G. M. & Dewar, W. 1994 An analytical theory of distributed axisymmetric barotropic vortices on the β-plane. J. Fluid Mech. 269, 301321.10.1017/S0022112094001576CrossRefGoogle Scholar
Reznik, G. M., Grimshaw, R. & Benilov, E. 2000 On the long-term evolution of an intense localized divergent vortex on the beta-plane. J. Fluid Mech. 422, 249280.10.1017/S0022112000001750CrossRefGoogle Scholar
Reznik, G. M. & Kizner, Z. 2007 Two-layer quasigeostrophic singular vortices embedded in a regular flow. Part I: invariants of motion and stability of vortex pairs. J. Fluid Mech. 584, 185202.10.1017/S0022112007006386CrossRefGoogle Scholar
Sedov, L. I. 1993 Similarity and Dimensional Methods in Mechanics, 496 p. CRC Press.Google Scholar
Sokolovskiy, M. A., Carton, X. J., Filyushkin, B. N. & Yakovenko, O. I. 2016 Interaction between a surface jet and subsurface vortices in a three-layer quasigeostrophic model. Geophys. Astrophys. Fluid Dyn. 110 (3), 201223.10.1080/03091929.2016.1164148CrossRefGoogle Scholar
Sromovsky, L. A. 1991 Latitudinal and longitudinal oscillations of cloud features on Neptune. Science 254, 684686.10.1126/science.254.5032.684CrossRefGoogle ScholarPubMed
Sutyrin, G. G. & Flierl, G. R. 1994 Intense vortex motion on the beta plane: development of the beta gyres. J. Atmos. Sci. 51 (5), 773790.10.1175/1520-0469(1994)051<0773:IVMOTB>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Sutyrin, G. G., Hesthaven, J. S., Lynov, J. P. & Rasmussen, J. J. 1994 Dynamical properties of vortical structures on the beta-plane. J. Fluid Mech. 268, 103131.10.1017/S002211209400128XCrossRefGoogle Scholar
Tamarin, T. & Kaspi, Y. 2016 The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci. 73, 16871707.10.1175/JAS-D-15-0168.1CrossRefGoogle Scholar
Tamarin, T. & Kaspi, Y. 2017 Mechanisms controlling the downstream poleward deflection of midlatitude storm tracks. J. Atmos. Sci. 74, 553572.10.1175/JAS-D-16-0122.1CrossRefGoogle Scholar
Trigo-Rodriguez, J. M., Sanchez-Lavega, A., Gomez, J. M., Lecacheux, J., Cola, F. & Miyazaki, I. 2000 The 90-day oscillations of Jupiter's great red spot revisited. Planet. Space Sci. 48, 331339.10.1016/S0032-0633(00)00002-7CrossRefGoogle Scholar
Tur, A. & Yanovsky, V. 2017 Coherent Vortex Structures in Fluids and Plasmas, 306 p. Springer International Publishing AG.10.1007/978-3-319-52733-8CrossRefGoogle Scholar
Vandermeirsch, F. O., Carton, X. J. & Morel, Y. G. 2003 a Interaction between an eddy and a zonal jet. Part I. One-and-a-half-layer model. Dyn. Atmos. Oceans 36, 247270.10.1016/S0377-0265(02)00065-9CrossRefGoogle Scholar
Vandermeirsch, F. O., Carton, X. J. & Morel, Y. G. 2003 b Interaction between an eddy and a zonal jet. Part II. Two-and-a-half-layer model. Dyn. Atmos. Oceans 36, 271296.10.1016/S0377-0265(02)00066-0CrossRefGoogle Scholar
Zeitlin, V. 2007 Introduction: fundamentals of rotating shallow water model in the geophysical fluid dynamics perpective. In Nonlinear Dynamics of Rotating Shallow Water. Methods and Advances (ed. Zeitlin, V.), pp. 145. Elsevier.Google Scholar