Hostname: page-component-7dd5485656-bt4hw Total loading time: 0 Render date: 2025-10-31T14:05:57.400Z Has data issue: false hasContentIssue false

Monitoring pressure and assessing injectivity during fluid injection into a porous medium

Published online by Cambridge University Press:  29 October 2025

Kaien Yang
Affiliation:
MOE Key Laboratory of Hydrodynamics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Zhong Zheng*
Affiliation:
MOE Key Laboratory of Hydrodynamics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
*
Corresponding author: Zhong Zheng, zzheng@alumni.princeton.edu; zhongzheng@sjtu.edu.cn

Abstract

Monitoring fluid flow and pollutant transport is important in many geophysical, environmental and industrial processes, such as geological $\textrm {CO}_2$ sequestration, waste water disposal, oil and gas recovery and sea water invasion. But it can also be challenging. Recent studies revealed a series of self-similar solutions to describe the interface shape evolution between the injecting and the ambient fluids during fluid injection into a confined porous layer. The present work focuses further on the pressure evolution. In particular, we present self-similar solutions for the pressure evolution at both the early and late times. Two dimensionless parameters are recognised, including the viscosity ratio $M$ and the rescaled buoyancy $G$, and their specific role on the pressure evolution is clarified. Laboratory experiments are also performed to measure the pressure evolution at two specific locations during the propagation of a viscous gravity current within a vertically placed Hele-Shaw cell, with a favourable comparison with the model prediction in the unconfined regime. The obtained pressure solutions are also used to explain the field data of bottom-hole-pressure (BHP) evolution from a geological $\textrm {CO}_2$ sequestration project, considering both fluid injection and shut-in operations. The model and solutions might also be of use to assess reservoir injectivity and develop pressure-based monitoring technologies at well bores.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235, 6777.Google Scholar
Barenblatt, G.I. 1996 Similarity, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press.10.1017/CBO9781107050242CrossRefGoogle Scholar
Boait, F.C., White, N.J., Bickle, M.J., Chadwick, R.A., Neufeld, J.A. & Huppert, H.E. 2012 Spatial and temporal evolution of injected CO at the Sleipner Field, North Sea. J. Geophys. Res. 117, B03309.Google Scholar
Brusseau, M.L. 1995 The effect of nonlinear sorption on transformation of contaminants during transport in porous media. J. Contam. Hydrol. 17, 277291.10.1016/0169-7722(94)00041-FCrossRefGoogle Scholar
Chadwick, R.A., Williams, G.A., Williams, J.D.O. & Noy, D.J. 2012 Measuring pressure performance of a large saline aquifer during industrial-scale $\textrm {CO}_2$ injection: the Utsira Sand, Norwegian North Sea. Intl J. Greenhouse Gas Control 10, 374388.10.1016/j.ijggc.2012.06.022CrossRefGoogle Scholar
Cowton, L., Neufeld, J.A., White, N.J., Bickle, M.J., White, J.C. & Chardwick, R.A. 2016 An inverse method for estimating thickness and volume with time of a thin $\textrm {CO}_2$ -filled layer at the Sleipner Field, North Sea. J. Geophys. Res. Solid Earth 121, 50685085.10.1002/2016JB012895CrossRefGoogle Scholar
Dudfield, P. & Woods, A.W. 2013 On the use of seismic data to monitor the injection of CO2 in to a layered aquifer. Earth Planet. Sci. Lett. 368, 132143.10.1016/j.epsl.2013.02.035CrossRefGoogle Scholar
Dudfield, P. & Woods, A.W. 2014 On the periodic injection of fluid into, and its extraction from, a confined aquifer. J. Fluid Mech. 755, 111141.10.1017/jfm.2014.311CrossRefGoogle Scholar
Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T.A. & Hoier, L. 2011 Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Proc. 4, 55415548.10.1016/j.egypro.2011.02.541CrossRefGoogle Scholar
Gor, G.Y., Stone, H.A. & Prevost, J.-H. 2013 Fracture propagation driven by fluid outflow from a low-permeability aquifer. Transport Porous Med. 100, 6982.CrossRefGoogle Scholar
Grayson, K.M., Dalziel, S.B. & Lawrie, A.G.W. 2022 The long view of triadic resonance instability in finite-width internal gravity wave beams. J. Fluid Mech. 953, A22.10.1017/jfm.2022.914CrossRefGoogle Scholar
Grude, S., Landro, M. & Dvorkin, J. 2014 Pressure effects caused by $ \textrm{CO}_2$ injection in the Tubaen Fm., the Snohvit field. Intl J. Greenhouse Gas Control 27, 178187.10.1016/j.ijggc.2014.05.013CrossRefGoogle Scholar
Guo, B., Zheng, Z., Bandilla, K.W., Celia, M.A. & Stone, H.A. 2016 a Flow regime analysis for geologic $\textrm {CO}_2$ sequestration and other subsurface fluid injections. Intl J. Greenh. Gas Control 53, 284291.CrossRefGoogle Scholar
Guo, B., Zheng, Z., Celia, M.A. & Stone, H.A. 2016 b Axisymmetric flows from fluid injection into a confined porous medium. Phys. Fluids 28, 022107.10.1063/1.4941400CrossRefGoogle Scholar
Hallez, Y. & Magnaudet, J. 2009 A numerical investigation of horizontal viscous gravity currents. J. Fluid Mech. 630, 7191.10.1017/S0022112009006454CrossRefGoogle Scholar
Hesse, M.A., Jr Orr, F.M. & Tchelepi, H.A. 2008 Gravity currents with residual trapping. J. Fluid Mech. 611, 3560.10.1017/S002211200800219XCrossRefGoogle Scholar
Hesse, M.A., Tchelepi, H.A., Cantwell, B.J. & Jr Orr, F.M. 2007 Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363383.CrossRefGoogle Scholar
Hewitt, D.R., Neufeld, J.A. & Balmforth, N.J. 2015 Shallow, gravity-driven flow in a poro-elastic layer. J. Fluid Mech.. 778, 335360.10.1017/jfm.2015.361CrossRefGoogle Scholar
Hinton, E.M. & Woods, A.W. 2018 Buoyancy-driven flow in a confined aquifer with a vertical gradient of permeability. J. Fluid Mech. 848, 411429.CrossRefGoogle Scholar
Hinton, E.M. & Woods, A.W. 2019 The effect of vertically varying permeability on tracer dispersion. J. Fluid Mech. 860, 384407.10.1017/jfm.2018.891CrossRefGoogle Scholar
Huppert, H.E. & Woods, A.W. 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292, 5569.10.1017/S0022112095001431CrossRefGoogle Scholar
IPCC 2005 Underground Geological Storage in the IPCC Special Report on Carbon Dioxide Capture and Storage, leading authors include S.M.P. Benson, P. Cook, et al. Cambridge University Press.Google Scholar
Jha, B., Cueto-Felgueroso, L. & Juanes, R. 2011 Fluids mixing from viscous fingering. Phys. Rev. Lett. 106, 194502.10.1103/PhysRevLett.106.194502CrossRefGoogle ScholarPubMed
Juanes, R., MacMinn, C.W. & Szulczewski, M.L. 2010 The footprint of the $\textrm {CO}_2$ plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Media 82, 1930.10.1007/s11242-009-9420-3CrossRefGoogle Scholar
Kang, M., Christian, S., Celia, M.A., Mauzerall, D.L., Bill, M., Miller, A.R., Chen, Y., Conrad, M.E., Darrah, T.H. & Jackson, R.B. 2016 Identification and characterization of high methane-emitting abandoned oil and gas wells. PNAS 113, 1363613641.10.1073/pnas.1605913113CrossRefGoogle ScholarPubMed
Kashinath, K., Li, L.K.B. & Juniper, M.P. 2018 Forced synchronization of periodic and aperiodic thermoacoustic oscillations: lock-in bifurcations and open-loop control. J. Fluid Mech. 838, 690714.10.1017/jfm.2017.879CrossRefGoogle Scholar
Lai, C.-Y., Zheng, Z., Dressaire, E. & Stone, H.A. 2016 Fluid-driven cracks in an elastic matrix in the toughness-dominated limit. Phil. Tran. R. Soc. A 374, 20150425.10.1098/rsta.2015.0425CrossRefGoogle Scholar
Lai, C.-Y., Zheng, Z., Dressaire, E., Wexler, J.S. & Stone, H.A. 2015 Experimental study on penny-shaped fluid-driven cracks in an elastic matrix. Proc. R. Soc. A 471, 20150255.10.1098/rspa.2015.0255CrossRefGoogle Scholar
Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165187.10.1017/S0022112088000953CrossRefGoogle Scholar
Linden, P.F. 1975 The deepening of a mixed layer in a stratified fluid. J. Fluid Mech. 71, 385405.CrossRefGoogle Scholar
Lister, J.R. 1990 Buoyancy-driven fluid fracture: similarity solutions for the horizontal and vertical propagation of fluid-filled cracks. J. Fluid Mech. 217, 213239.10.1017/S0022112090000696CrossRefGoogle Scholar
Lister, J.R., Peng, G.G. & Neufeld, J.A. 2013 Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111, 154501.CrossRefGoogle Scholar
Lyle, S., Huppert, H.E., Hallworth, M., Bickle, M. & Chadwick, A. 2005 Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293302.10.1017/S0022112005006713CrossRefGoogle Scholar
MacMinn, C.W., Szulczewski, M.L. & Juanes, R. 2010 $\textrm {CO}_2$ migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329351.10.1017/S0022112010003319CrossRefGoogle Scholar
Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A. & Huppert, H.E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37.CrossRefGoogle Scholar
Neufeld, J.A., Vella, D. & Huppert, H.E. 2009 The effect of a fissure on storage in a porous medium. J. Fluid Mech. 639, 239259.10.1017/S0022112009991030CrossRefGoogle Scholar
Nijjer, J.S., Duncan, R.H. & Neufeld, J.A. 2018 The dynamics of miscible viscous fingering from onset to shutdown. J. Fluid Mech. 837, 520545.10.1017/jfm.2017.829CrossRefGoogle Scholar
Nijjer, J.S., Hewitt, D.R. & Neufeld, J.A. 2022 Horizontal miscible displacements through porous media: the interplay between viscous fingering and gravity segregation. J. Fluid Mech. 935, A14.10.1017/jfm.2021.1067CrossRefGoogle Scholar
Nordbotten, J.M. & Celia, M.A. 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307327.10.1017/S0022112006000802CrossRefGoogle Scholar
Nordbotten, J.M., Kavetski, D., Celia, M.A. & Bachu, S. 2009 Model for CO $_2$ leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43, 743749.10.1021/es801135vCrossRefGoogle Scholar
OKeeffe, N.J., Huppert, H.E. & Linden, P.F. 2018 Experimental exploration of fluid-driven cracks in brittle hydrogels. J. Fluid Mech. 844, 435458.10.1017/jfm.2018.203CrossRefGoogle Scholar
Pacala, S. & Socolow, R. 2004 Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968972.10.1126/science.1100103CrossRefGoogle ScholarPubMed
Peake, N. & Crighton, D.G. 1991 An asymptotic theory of near-field propeller acoustics. J. Fluid Mech. 232, 285301.10.1017/S0022112091003695CrossRefGoogle Scholar
Pegler, S.S., Huppert, H.E. & Neufeld, J.A. 2014 Fluid injection into a confined porous layer. J. Fluid Mech. 745, 592620.10.1017/jfm.2014.76CrossRefGoogle Scholar
Pihler-Puzovic, D., Illien, P., Heil, M. & Juel, A. 2012 Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108, 074502.10.1103/PhysRevLett.108.074502CrossRefGoogle Scholar
Pritchard, D., Woods, A.W. & Hogg, A.W. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.10.1017/S002211200100516XCrossRefGoogle Scholar
Ringrose, P. & Saether, O. 2020 CO $_2$ injection operations: Insights from Sleipner and Snohvit, In Carbon Capture Utilisation and Storage Conference, SPE Aberdeen.Google Scholar
Ruith, M. & Meiburg, E. 2000 Miscible rectilinear displacements with gravity override. Part 1. Homogeneous porous medium. J. Fluid Mech. 420, 225257.10.1017/S0022112000001543CrossRefGoogle Scholar
Saffman, P.G. & Taylor, G.I. 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.Google Scholar
Savitski, A.A. & Detournay, E. 2002 Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: asymptotic solutions. Intl J. Solids Struct. 39, 63116337.CrossRefGoogle Scholar
Spence, D.A. & Sharp, P. 1985 Self-similar solutions for elastohydrodynamic cavity flow. Proc. R. Soc. A 400, 289313.Google Scholar
Taylor, G.I. 1953 Dispersion of soluble mater in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186203.Google Scholar
Woods, A.W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.10.1017/S0022112008004527CrossRefGoogle Scholar
Zheng, Z. 2025 The deflation of a hydraulic fracture subject to fluid withdrawal through a narrow conduit: the influence of material toughness. J. Fluid Mech. 1007, A71.10.1017/jfm.2025.98CrossRefGoogle Scholar
Zheng, Z., Griffiths, I.M. & Stone, H.A. 2015 a Propagation of a viscous thin film over an elastic membrane. J. Fluid Mech. 784, 443464.10.1017/jfm.2015.598CrossRefGoogle Scholar
Zheng, Z., Guo, B., Christov, I.C., Celia, M.A. & Stone, H.A. 2015 b Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881909.10.1017/jfm.2015.68CrossRefGoogle Scholar
Zheng, Z. & Neufeld, J.A. 2019 a Self-similar dynamics of two-phase flows injected into a confined porous layer. J. Fluid Mech. 877, 882921.CrossRefGoogle Scholar
Zheng, Z. & Neufeld, J.A. 2019 b Self-similar dynamics of two-phase flows injected into a confined porous layer. J. Fluid Mech. 877, 882921.10.1017/jfm.2019.585CrossRefGoogle Scholar
Zheng, Z., Soh, B., Huppert, H.E. & Stone, H.A. 2013 Fluid drainage from the edge of a porous reservoir. J. Fluid Mech. 718, 558568.10.1017/jfm.2012.630CrossRefGoogle Scholar
Zheng, Z. & Stone, H.A. 2022 The influence of boundaries on gravity currents and thin films: drainage, confinement, convergence, and deformation effects. Annu. Rev. Fluid Mech. 54, 2756.10.1146/annurev-fluid-030121-025957CrossRefGoogle Scholar