No CrossRef data available.
Published online by Cambridge University Press: 12 November 2025

This study presents an analytical advancement in predicting the growth rate of perturbation amplitude in two-dimensional non-standard Richtmyer–Meshkov instability (RMI), driven by the interaction of a first-phase rippled shock wave at moderate Mach number with a heavy–light interface. We extend the irrotational model to encompass non-standard RMI scenarios, establishing a generalised framework validated through numerical simulations. Distinct from previous models, our model is free of empirical coefficients, and demonstrates superior accuracy across diverse perturbation configurations and Mach numbers. The analyses reveal the fundamental disparity of non-standard RMI from classical RMI: the vorticity deposition mechanism in non-standard RMI arises not only from normal pressure gradients at the shock front but crucially from tangential pressure gradients behind the shock wave. The asymptotic circulations are also well predicted by our model. Moreover, the relationship of the amplitudes between sinusoidal shock and perturbed interface is derived based on the model to realise the freeze-out of interface amplitude. The initial fundamental mode’s amplitude growth is frozen well, and the mixing width is greatly suppressed.