Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T09:58:23.259Z Has data issue: false hasContentIssue false

Mixing by random stirring in confined mixtures

Published online by Cambridge University Press:  25 December 2008

J. DUPLAT
Affiliation:
Aix-Marseille Université, IUSTI, 13453 Marseille Cedex 13, France
E. VILLERMAUX
Affiliation:
Aix-Marseille Université, IRPHE, 13384 Marseille Cedex 13, France

Abstract

We study the relaxation of initially segregated scalar mixtures in randomly stirred media, aiming to describe the overall concentration distribution of the mixture, its shape and rate of deformation as it evolves towards uniformity. A stirred scalar mixture can be viewed as a collection of stretched sheets, possibly interacting with each other. We consider a situation in which the interaction between the sheets is enforced by confinement and is the key factor ruling its evolution. It consists of following a mixture relaxing towards uniformity around a fixed average concentration while flowing along a constant cross-section channel. The interaction between the sheets is found to be of a random addition nature in concentration space, leading to concentration distributions that are stable by self-convolution. The resulting scalar field is naturally coarsened at a scale much larger than the dissipation scale. Consequences on the mixture entropy and scalar rate of dissipation are also examined.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allègre, C. J. & Turcotte, D. L. 1986 Implications of a two-component marble-cake mantle. Nature 323, 123127.CrossRefGoogle Scholar
Arnold, V. I. & Avez, A. 1967 Problèmes Ergodiques de la Mécanique Classique. Gauthier–Villars Editeur.Google Scholar
Balmforth, N. J. & Young, W. R. 2003 Diffusion-limited scalar cascades. J. Fluid Mech. 482, 91100.CrossRefGoogle Scholar
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.CrossRefGoogle Scholar
Beigie, D., Leonard, A. & Wiggins, S. 1991 A global study of enhanced stretching and diffusion in cahotic tangles. Phys. Fluids A 3 (5), 10391050.CrossRefGoogle Scholar
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.CrossRefGoogle Scholar
Buch, K. A. Jr, & Dahm, W. J. A. 1996 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc ≫ 1. J. Fluid Mech. 317, 2171.CrossRefGoogle Scholar
Celani, A. & Seminara, A. 2005 Large-scale structure of passive scalar turbulence. Phys. Rev. Lett. 94, 214503.CrossRefGoogle ScholarPubMed
Chen, H., Chen, S. & Kraichnan, R. H. 1989 Probability distribution of a stochastically advected scalar field. Phys. Rev. Lett. 63, 2657.CrossRefGoogle ScholarPubMed
Chertkov, M., Kolokolov, I. & Lebedev, V. 2007 Strong effect of weak diffusion on scalar turbulence at large scales. Phys. Fluids 19 (10), 101703.CrossRefGoogle Scholar
Clay, P. H. 1940 The mechanism of emulsion formation in turbulent flow. 1. Experimental part. Proc. R. Acad. Sci. (Amsterdam) 43, 852865.Google Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469473.CrossRefGoogle Scholar
Curl, R. L. 1963 Dispersed phase mixing. I. Theory and effect in simple reactors. AIChE J. 9 (2), 175181.CrossRefGoogle Scholar
Danckwerts, P. V. 1953 Theory of mixtures and mixing. Research 6, 355361.Google Scholar
Dimotakis, P. E. & Catrakis, H. J. 1999 Turbulence, fractals and mixing. In Mixing Chaos and Turbulence (ed. Chaté, H., Villermaux, E. & Chomaz, J. M.), pp. 59143. Kluwer Academic/Plenum.CrossRefGoogle Scholar
Dopazo, C. 1979 Relaxation of initial probability density function in the turbulent convection of scalar fields. Phys. Fluids 22 (1), 2030.CrossRefGoogle Scholar
Dopazo, C. 1994 Recent developments in pdf methods. In Turbulent Reacting Flows (ed. Libby, P. A. & Williams, F. A.), chapter 7. Academic Press.Google Scholar
Duplat, J. & Villermaux, E. 2000 Persistency of material element deformation in isotropic flows and growth rate of lines and surfaces. Eur. Phys. J. B 18, 353361.CrossRefGoogle Scholar
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flows 20, 169209.CrossRefGoogle Scholar
Eswaran, V. & Pope, S. B. 1988 Direct numerical simulation of the turbulent mixing of a passive scalar. Phys. Fluids 31 (3), 506520.CrossRefGoogle Scholar
Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913975.CrossRefGoogle Scholar
Fannjiang, A., Nonnenmacher, S. & Wolonski, L. 2004 Dissipation time and decay of correlations. Nonlinearity 17, 14811508.CrossRefGoogle Scholar
Feller, W. 1970 An Introduction to Probability Theory and Its Applications. John Wiley.Google Scholar
Fourier, J. 1822 Théorie Analytique de la Chaleur. Firmin Didot.Google Scholar
Fox, R. O. 1994 Improved Fokker–Planck model for the joint scalar, scalar gradient pdf. Phys. Fluids 6 (1), 334348.CrossRefGoogle Scholar
Fox, R. O. 2004 Computational Models for Turbulent Reacting Flows. Cambridge University Press.Google Scholar
Fox, R. O. & Raman, V. 2004 A multienvironment conditional probability density function model for turbulent reacting flows. Phys. Fluids 16 (12), 45514565.CrossRefGoogle Scholar
Friedlander, S. K. & Wang, C. S. 1966 The self-preserving particle size distribution for coagulation by Brownian motion. J. Colloid Interface Sci. 22, 126132.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Gibbs, J. W. 1981 Elementary Principles in Statistical Mechanics. Reprint edition. Ox Bow Press.Google Scholar
Girimaji, S. S. & Pope, S. B. 1990 Material–element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.CrossRefGoogle Scholar
Hinze, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.CrossRefGoogle Scholar
Holzer, M. & Siggia, E. D. 1994 Turbulent mixing of a passive scalar. Phys. Fluids 6 (5), 18201837.CrossRefGoogle Scholar
Jayesh, & Warhaft, Z. 1992 Probability distributions, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence. Phys. Fluids A 4 (10), 22922307.CrossRefGoogle Scholar
Kimura, Y. & Kraichnan, R. H. 1993 Statistics of an advected passive scalar. Phys. Fluids A 5 (9), 22642277.CrossRefGoogle Scholar
Lavertu, A. & Mydlarski, L. 2005 Scalar mixing from a concentrated source in a turbulent channel flow. J. Fluid Mech. 528, 135172.CrossRefGoogle Scholar
Lei, X., Ackerson, B. J. & Tong, P. 2001 Settling statistics of hard sphere particles. Phys. Rev. Lett. 86 (15), 33003303.CrossRefGoogle ScholarPubMed
Levèque, M. A. 1928 Les lois de la transmission de la chaleur par convection. Ann. Mines 13, 201239.Google Scholar
Marble, F. E. 1988 Mixing, diffusion and chemical reaction of liquids in a vortex field. In Chemical Reactivity in Liquids: Fundamental Aspects (ed. Moreau, M. & Turq, P.). Plenum.Google Scholar
Marble, F. E. & Broadwell, J. E. 1977 The coherent flame model for turbulent chemical reactions. Project SQUID, Tech. Rep. TRW-9-PU.CrossRefGoogle Scholar
Mayer, J. E. & Mayer, M. G. 1966 Statistical Mechanics. John Wiley.Google Scholar
Meunier, P. & Villermaux, E. 2003 How vortices mix. J. Fluid Mech. 476, 213222.CrossRefGoogle Scholar
Mohr, W. D., Saxton, R. L. & Jepson, C. H. 1957 Mixing in laminar-flow systems. Ind. Engng Technol. 49 (11), 18551856.CrossRefGoogle Scholar
Obukhov, A. M. 1949 Structure of the temperature field in a turbulent flow. Izv. Acad. Nauk SSSR, Geogr. i Geofiz 13, 5869.Google Scholar
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.Google Scholar
Pope, S. B. 1985 Pdf methods for turbulent reacting flows. Prog. Energy Combust. Sci. 11, 119192.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pumir, A. 1994 A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids 6 (6), 21182132.CrossRefGoogle Scholar
Pumir, A., Shraiman, B. I. & Siggia, E. D. 1991 Exponential tails and random advection. Phys. Rev. Lett. 66 (23), 29842987.CrossRefGoogle ScholarPubMed
Ranz, W. E. 1979 Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows. AIChE J. 25 (1), 4147.CrossRefGoogle Scholar
Rhines, P. B. & Young, W. R. 1983 How rapidly is a passive scalar mixed within closed streamlines. J. Fluid Mech. 133, 133145.CrossRefGoogle Scholar
Sawford, B. L. 2004 Conditional scalar mixing statistics in homogeneous isotropic turbulence. New J. Phys. 6, 55.CrossRefGoogle Scholar
Schlichting, H. 1987 Boundary Layer Theory. McGraw-Hill.Google Scholar
Schumacher, J., Sreenivasan, K. R. & Yeung, P. K. 2005 Very fine structures in scalar mixing. J. Fluid Mech. 531, 113122.CrossRefGoogle Scholar
Sinai, Ya. G. & Yakhot, V. 1989 Limiting probability distributions of a passive scalar in a random velocity field. Phys. Rev. Lett. 63, 19621964.CrossRefGoogle Scholar
Sreenivasan, K. R. 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165182.Google Scholar
Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65102.CrossRefGoogle Scholar
Venaille, A. & Sommeria, J. 2007 A dynamical equation for the distribution of a scalar advected by turbulence. Phys. Fluids 19 (2), 028101.CrossRefGoogle Scholar
Villermaux, E. & Duplat, J. 2003 Mixing as an aggregation process. Phys. Rev. Lett. 91 (18), 184501.CrossRefGoogle ScholarPubMed
Villermaux, E. & Duplat, J. 2006 Coarse-grained scale of turbulent mixtures. Phys. Rev. Lett. 97 (14), 144506.CrossRefGoogle ScholarPubMed
Villermaux, E. & Innocenti, C. 1999 On the geometry of turbulent mixing. J. Fluid Mech. 393, 123145.CrossRefGoogle Scholar
Villermaux, E., Innocenti, C. & Duplat, J. 1998 Histogramme des fluctuations scalaire dans le mlange turbulent transitoire. C. R. Acad. Sci. Paris 326 (Série), 2126.Google Scholar
Villermaux, E., Innocenti, C. & Duplat, J. 2001 Short circuits in the Corrsin–Oboukhov cascade. Phys. Fluids 13 (1), 284289.CrossRefGoogle Scholar
Villermaux, E. & Rehab, H. 2000 Mixing in coaxial jets. J. Fluid Mech. 425, 161185.CrossRefGoogle Scholar
Villermaux, E., Stroock, A. D. & Stone, H. A. 2008 Bridging kinematics and concentration content in a chaotic micromixer. Phys. Rev. E 77 (1, Pt 2), 015301.Google Scholar
Von Smoluchowski, M. 1917 Versuch einer mathematischen theorie der koagulationskinetik kolloider losungen. Z. Phys. Chem. 92, 129168.Google Scholar
Voth, G. A., Haller, G. & Gollub, J. P. 2002 Experimental measurements of stretching fields in fluids. Phys. Rev. Lett. 88 (25), 254501.CrossRefGoogle Scholar
Warhaft, Z. 1984 The interference of thermal fields from line sources in grid turbulence. J. Fluid Mech. 144, 363387.CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.CrossRefGoogle Scholar
Zeldovich, Y. B. 1937 The asymptotic law of heat transfer at small velocities in the finite domain problem. Zhurnal Eksp. i Teor. Fiz. 7 (12), 14661468.Google Scholar