Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T22:22:32.213Z Has data issue: false hasContentIssue false

Minimal flow perturbations that trigger kinematic dynamo in shear flows

Published online by Cambridge University Press:  15 April 2016

W. Herreman*
Affiliation:
LIMSI, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, F-91405, France
*
Email address for correspondence: wietze@limsi.fr

Abstract

Parallel shear flows cannot be kinematic dynamos on their own (Zel’dovich, Sov. Phys. JETP, vol. 4, 1957, pp. 460–462), but the addition of small flow perturbations can trigger dynamo action. Using an optimization algorithm inspired by Willis (Phys. Rev. Lett., vol. 109 (25), 2012, 251101) and Chen et al. (J. Fluid Mech., vol. 783, 2015, pp. 23–45), we identify the smallest perturbation that when added to Kolmogorov flow can trigger dynamo action at some fixed value of the magnetic Reynolds number. In this way we numerically measure the fragility of the Zel’dovich anti-dynamo theorem. The minimal perturbations have surprisingly simple spatial structures. Their magnitudes vary inversely proportional to the magnetic Reynolds number and are always much larger than theoretical lower bounds calculated here using the methods of Proctor (Geophys. Astrophys. Fluid Dyn., vol. 98 (3), 2004, pp. 235–240; J. Fluid Mech., vol. 697, 2012, pp. 504–510).

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biau, D. & Bottaro, A. 2009 An optimal path to transition in a duct. Phil. Trans. R. Soc. Lond. A 367 (1888), 529544.Google Scholar
Braginsky, S. I. 1964 Self excitation of a magnetic field during the motion of a highly conducting fluid. Sov. Phys. JETP 20, 726735.Google Scholar
Bullard, E. & Gellman, H. 1954 Homogeneous dynamos and terrestrial magnetism. Phil. Trans. R. Soc. Lond. A 247 (928), 213278.Google Scholar
Chen, L., Herreman, W. & Jackson, A. 2015 Optimal dynamo action by steady flows confined to a cube. J. Fluid Mech. 783, 2345.Google Scholar
Cowling, T. G. & Hare, A. 1957 Two-dimensional problems of the decay of magnetic fields in magnetohydrodynamics. Q. J. Mech. Appl. Math. 10 (4), 385405.CrossRefGoogle Scholar
Duguet, Y., Brandt, L. & Larsson, B. R. J. 2010 Towards minimal perturbations in transitional plane Couette flow. Phys. Rev. E 82 (2), 026316.Google Scholar
Elsasser, W. M. 1946 Induction effects in terrestrial magnetism part I. Theory. Phys. Rev. 69 (3‐4), 106.CrossRefGoogle Scholar
Herault, J., Rincon, F., Cossu, C., Lesur, G., Ogilvie, G. I. & Longaretti, P.-Y. 2011 Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows. Phys. Rev. E 84, 036321.Google Scholar
Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91 (24), 244502.CrossRefGoogle Scholar
Krause, F. & Rädler, K.-H. 1980 Mean-field Magnetohydrodynamics and Dynamo. Akademi-Verlag and Pergamon.Google Scholar
Mellibovsky, F. & Meseguer, A. 2007 Pipe flow transition threshold following localized impulsive perturbations. Phys. Fluids 19 (4), 044102.Google Scholar
Moffatt, H. K. 1978 Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Morin, V. & Dormy, E. 2009 The dynamo bifurcation in rotating spherical shells. Intl J. Mod. Phys. B 23 (28–29), 54675482.Google Scholar
Pralits, J. O., Bottaro, A. & Cherubini, S. 2015 Weakly nonlinear optimal perturbations. J. Fluid Mech. 785, 135151.Google Scholar
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105 (15), 154502.Google Scholar
Proctor, M. R. E. 2004 An extension of the toroidal theorem. Geophys. Astrophys. Fluid Dyn. 98 (3), 235240.CrossRefGoogle Scholar
Proctor, M. R. E. 2012 Bounds for growth rates for dynamos with shear. J. Fluid Mech. 697, 504510.CrossRefGoogle Scholar
Rincon, F., Ogilvie, G. I. & Proctor, M. R. E. 2007 Self-sustaining nonlinear dynamo process in Keplerian shear flows. Phys. Rev. Lett. 98 (25), 254502.CrossRefGoogle ScholarPubMed
Rincon, F., Ogilvie, G. I., Proctor, M. R. E. & Cossu, C. 2008 Subcritical dynamos in shear flows. Astron. Nachr. 329 (7), 750761.Google Scholar
Riols, A., Rincon, F., Cossu, C., Lesur, G., Longaretti, P.-Y., Ogilvie, G. I. & Herault, J. 2013 Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow. J. Fluid Mech. 731, 145.CrossRefGoogle Scholar
Roberts, P. H. 1988 Future of geodynamo theory. Geophys. Astrophys. Fluid Dyn. 44 (1–4), 331.Google Scholar
Soward, A. M. 1972 A kinematic theory of large magnetic Reynolds number dynamos. Phil. Trans. R. Soc. Lond. A 272 (1227), 431462.Google Scholar
Sreenivasan, B. & Jones, C. A. 2011 Helicity generation and subcritical behaviour in rapidly rotating dynamos. J. Fluid Mech. 688, 530.Google Scholar
Vainshtein, S. I. & Zel’dovich, Y. B. 1972 Origin of magnetic fields in astrophysics (turbulent ‘dynamo’ mechanisms). Phys. Uspekhi 15 (2), 159172.Google Scholar
Willis, A. P. 2012 Optimization of the magnetic dynamo. Phys. Rev. Lett. 109 (25), 251101.Google Scholar
Zel’dovich, Y. B. 1957 The magnetic field in the two-dimensional motion of a conducting turbulent fluid. Sov. Phys. JETP 4, 460462.Google Scholar
Zel’dovich, Y. B. & Ruzmaikin, A. A. 1980 Magnetic field of a conducting fluid in two-dimensional motion. Zh. Eksp. Teor. Fiz. 78, 980986.Google Scholar