Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:46:46.026Z Has data issue: false hasContentIssue false

Microwave-heating laboratory experiments for planetary mantle convection

Published online by Cambridge University Press:  15 July 2015

A. Limare*
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, CNRS, 1 rue Jussieu, 75238 Paris, France
K. Vilella
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, CNRS, 1 rue Jussieu, 75238 Paris, France
E. Di Giuseppe
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, CNRS, 1 rue Jussieu, 75238 Paris, France CEMEF, MINES ParisTech, CNRS, CS 10207, 06904 Sophia Antipolis, France
C. G. Farnetani
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, CNRS, 1 rue Jussieu, 75238 Paris, France
E. Kaminski
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, CNRS, 1 rue Jussieu, 75238 Paris, France
E. Surducan
Affiliation:
National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath St., 400293 Cluj-Napoca, Romania
V. Surducan
Affiliation:
National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath St., 400293 Cluj-Napoca, Romania
C. Neamtu
Affiliation:
National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath St., 400293 Cluj-Napoca, Romania
L. Fourel
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, CNRS, 1 rue Jussieu, 75238 Paris, France
C. Jaupart
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, CNRS, 1 rue Jussieu, 75238 Paris, France
*
Email address for correspondence: limare@ipgp.fr

Abstract

Thermal evolution of telluric planets is mainly controlled by secular cooling and internal heating due to the decay of radioactive isotopes, two processes that are equivalent from the standpoint of convection dynamics. In a fluid cooled from above and volumetrically heated, convection is dominated by instabilities of the top boundary layer and the interior thermal structure is non-isentropic. Here we present innovative laboratory experiments where microwave radiation is used to generate uniform internal heat in fluids at high Prandtl number (${>}300$) and high Rayleigh–Roberts number (ranging from $10^{4}$ to $10^{7}$), appropriate for planetary mantle convection. Non-invasive techniques are employed to determine both temperature and velocity fields. We successfully validate the experimental results by conducting numerical simulations in three-dimensional Cartesian geometry that reproduce the experimental conditions. Scaling laws relating key characteristics of the thermal boundary layer, namely its thickness and temperature drop, to the Rayleigh–Roberts number have been established for both rigid and free-slip boundary conditions. A robust conclusion is that for rigid boundary conditions the internal temperature is significantly higher than for free-slip boundary conditions. Our scaling laws, coupled with plausible physical parameters entering the Rayleigh–Roberts number, enable us to calculate the mantle potential temperature for the Earth and Venus, two telluric planets with different mechanical boundary conditions at their surface.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armann, M. & Tackley, P. J. 2012 Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. 117, E12003.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Choblet, G. & Parmentier, E. M. 2009 Thermal convection heated both volumetrically and from below: implications for predictions of planetary evolution. Phys. Earth Planet. Inter. 173, 290296.Google Scholar
Dadarlat, D. & Neamtu, C. 2009 High accuracy photopyroelectric calorimetry of liquids. Acta Chim. Slov. 56, 225236.Google Scholar
Davaille, A. & Jaupart, C. 1993 Transient high-Rayleigh number thermal convection with large viscosity variations. J. Fluid Mech. 253, 141166.Google Scholar
Davaille, A. & Limare, A. 2007 Laboratory studies on mantle convection. In Treatise of Geophysics (ed. Bercovici, D. & Schubert, G.), pp. 89165. Elsevier.Google Scholar
Davaille, A., Limare, A., Touitou, F., Kumagai, I. & Vatteville, J. 2011 Anatomy of a laminar starting thermal plume at high Prandtl number. Exp. Fluids 50 (2), 285300.Google Scholar
Deschamps, F., Yao, C., Tackley, P. J. & Sanchez-Valle, C. 2012 High Rayleigh number thermal convection in volumetrically heated spherical shells. J. Geophys. Res. 117, E09006.Google Scholar
Garel, F., Kaminski, E., Tait, S. & Limare, A. 2012 An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents: implications for thermal monitoring of lava flows and domes. J. Geophys. Res. 117, B02205.Google Scholar
Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J. & Hernlund, J. W. 2013 The high conductivity of iron and thermal evolution of the Earths core. Phys. Earth Planet. Inter. 224, 88103.Google Scholar
Grasset, O. & Parmentier, E. M. 1998 Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: implications for planetary thermal evolution. J. Geophys. Res. 103, 171181.Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.Google Scholar
Hansen, U., Yuen, D. A. & Malevsky, A. V. 1992 Comparison of steady-state and strongly chaotic thermal convection at high Rayleigh number. Phys. Rev. A 46, 47424754.Google Scholar
Herzberg, C., Condie, K. & Korenaga, J. 2010 Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 7988.Google Scholar
Ichikawa, H., Kurita, K., Yamagishi, Y. & Yanagisawa, T. 2006 Cell pattern of thermal convection induced by internal heating. Phys. Fluids 18, 038101,1–4.Google Scholar
Jarvis, G. T., Glatzmaierand, G. A. & Vangelov, V. I. 1995 Effects of curvature, aspect ratio and plan form in two- and three-dimensional spherical models of thermal convection. Geophys. Astrophys. Fluid Dyn. 79 (1–4), 147171.Google Scholar
Jaupart, C. & Brandeis, G. 1986 The stagnant bottom layer of convecting magma chambers. Earth Planet. Sci. Lett. 80, 183199.Google Scholar
Jaupart, C., Labrosse, S. & Mareschal, J.-C. 2007 Temperatures, heat and energy in the mantle of the Earth. In Treatise of Geophysics (ed. Bercovici, D. & Schubert, G.), pp. 253303. Elsevier.Google Scholar
Jaupart, C. & Mareschal, J.-C. 2011 Heat Generation and Transport in the Earth. Cambridge University Press.Google Scholar
Katsaros, K. B., Liu, W. T., Businger, J. A. & Tillman, J. E. 1977 Heat thermal structure in the interfacial boundary layer measured in an open tank of water in turbulent free convection. J. Fluid Mech. 83, 311335.CrossRefGoogle Scholar
Kite, E. S., Manga, M. & Gaidos, E. 2009 Geodynamics and rate of volcanism on massive Earth-like planets. Astrophys. J. 700, 17321749.Google Scholar
Krishnamurti, R. 1997 Convection induced by selective absorption of radiation: a laboratory model of conditional stability. Dyn. Atmos. Oceans 27, 367382.CrossRefGoogle Scholar
Kulacki, F. A. & Goldstein, R. J. 1972 Thermal convection in a horizontal fluid layer with volumetric heat sources. J. Fluid Mech. 271, 271287.Google Scholar
Kulacki, F. A. & Nagle, M. E. 1975 Natural convection in a horizontal fluid layer with volumetric energy sources. J. Heat Transfer 97, 204211.Google Scholar
Limare, A., Surducan, E., Surducan, V., Neamtu, C., di Giuseppe, E., Vilella, K., Farnetani, C. G., Kaminski, E. & Jaupart, C. 2013 Microwave-based laboratory experiments for internally-heated mantle convection. In Processes in Isotopes and Molecules (PIM 2013): AIP Conference Proceedings, vol. 1565, pp. 1416. AIP.Google Scholar
McKenzie, D. & Bickle, M. 1988 The volume and composition of melt generated by extension of lithosphere. J. Petrol. 29, 625679.CrossRefGoogle Scholar
McKenzie, D. & Weiss, N. O. 1975 Speculations on the thermal and tectonic history of the Earth. J. R. Astron. Soc. 42, 131174.Google Scholar
McNamara, A. K. & van Keken, P. E. 2000 Cooling of the earth: a parameterized convection study of whole versus layered models. Geochem. Geophys. Geosyst. 1, 2000GC000045.Google Scholar
Neralla, V. R. & Danard, M. B. 1975 Incorporation of parameterized convection in the synoptic study of large scale effects of the great lakes. Mon. Weath. Rev. 103, 388405.Google Scholar
Nimmo, F. 2002 Why does Venus lack a magnetic field? Geology 30, 387990.Google Scholar
Parmentier, E. M. & Sotin, C. 2000 Three-dimensional numerical experiments on thermal convection in a very viscous fluid: implications for the dynamics of the thermal boundary layer at high Rayleigh number. Phys. Fluids 12, 609617.Google Scholar
Parmentier, E. M., Sotin, C. & Travis, B. J. 1994 Turbulent 3-D thermal convection in an infinite Prandtl number, volumetrically heated fluid: implication for mantle dynamics. Geophys. J. Intl 116, 241251.Google Scholar
Putirka, K. D., Perfit, M., Ryerson, F. J. & Jackson, M. G. 2007 Ambient and excess mantle temperatures, olivine thermometry, and active vs passive upwelling. Chem. Geol. 241, 177206.Google Scholar
Roberts, P. H. 1967 Convection in horizontal layers with internal heat generation. Theory. J. Fluid Mech. 30, 3349.Google Scholar
Schwiderski, E. W. & Schwab, H. J. A. 1971 Convection experiments with electrolytically heated fluid layers. J. Fluid Mech. 48, 703717.Google Scholar
Smrekar, S. E. & Sotin, C. 2012 Constraints on mantle plumes on Venus: implications for volatile history. Icarus 217, 510523.Google Scholar
Sotin, C. & Labrosse, S. 1999 Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and bellow: applications to the transfer of heat through planetary mantles. Phys. Earth Planet. Inter. 112, 171190.Google Scholar
Surducan, E., Surducan, V., Limare, A., Neamtu, C. & di Giuseppe, E. 2014 Microwave heating device performing internal-heating convection experiments, applied to Earth’s mantle dynamics. Rev. Sci. Instrum. 85, 124702.Google Scholar
Tackley, P. J. 1993 Effects of strongly temperature-dependent viscosity on time-dependent, 3-dimensional models of mantle convection. Geophys. Res. Lett. 20, 21872190.Google Scholar
Takahashi, J., Tasaka, Y., Murai, Y., Takeda, Y. & Yanagisawa, T. 2010 Experimental study of cell pattern formation induced by internal heat sources in a horizontal fluid layer. Int. J. Heat Mass Transfer 53, 14831490.Google Scholar
Tasaka, Y., Kudoh, Y., Takeda, Y. & Yanagisawa, T. 2005 Experimental investigation of natural convection induced by internal heat generation. J. Phys.: Conf. Series 14, 168179.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985 The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications.Google Scholar
Townsend, A. A. 1964 Natural convection in water over an ice surface. Q. J. R. Meteorol. Soc. 90, 248259.Google Scholar
Tritton, D. J. & Zarraga, M. M. 1967 Convection in horizontal fluid layers with internal heat generation experiments. J. Fluid Mech. 30, 2131.Google Scholar
Turcotte, D. L. 1995 How does Venus lose heat? J. Geophys. Res. 100, 1693116940.Google Scholar
Worster, M. G., Huppert, H. E. & Sparks, R. S. J. 1990 Convection and crystallization in magma cooled from above. Earth Planet. Sci. Lett. 101 (1), 7889.Google Scholar
Supplementary material: PDF

Limare supplementary material

Tables S1-S3 and Figure S1

Download Limare supplementary material(PDF)
PDF 114.1 KB