Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T03:09:21.990Z Has data issue: false hasContentIssue false

A mechanism for jet drift over topography

Published online by Cambridge University Press:  26 April 2018

Hemant Khatri*
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
Pavel Berloff
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: h.khatri16@imperial.ac.uk

Abstract

The dynamics of multiple alternating oceanic jets has been studied in the presence of a simple bottom topography with constant slope in the zonal direction. A baroclinic quasi-geostrophic model forced with a horizontally uniform and vertically sheared background flow generates mesoscale eddies and jets that are tilted from the zonal direction and drift with constant speed. The governing dynamical equations are rewritten in a tilted frame of reference moving with the jets, and the cross-jet time-mean profiles of the linear and nonlinear stress terms are analysed. Here, the linear stress terms are present because of the zonally asymmetric topography. It is demonstrated that the linear dynamics controls the drift mechanism. Also, it is found that the drifting jets are directly forced by the imposed vertical shear, whereas the eddies oppose the jets, although this is limited to continuously forced dissipative systems. This role of the eddies is opposite to the one in the classical baroclinic model of stationary, zonally symmetric multiple jets. This is expected to be more generic in the ocean, which is zonally asymmetric nearly everywhere.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathey, R. & Cessi, P. 2014 Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr. 44 (8), 21072126.Google Scholar
Abernathey, R., Marshall, J., Mazloff, M. & Shuckburgh, E. 2010 Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr. 40 (1), 170184.Google Scholar
Arbic, B. K. & Flierl, G. R. 2004 Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J. Phys. Oceanogr. 34 (1), 7793.Google Scholar
Baldwin, M. P., Rhines, P. B., Huang, H. P. & McIntyre, M. E. 2007 The jet-stream conundrum. Science 315 (5811), 467468.CrossRefGoogle ScholarPubMed
Barthel, A., Hogg, A., Waterman, S. & Keating, S. 2017 Jet–topography interactions affect energy pathways to the deep Southern Ocean. J. Phys. Oceanogr. 47 (7), 17991816.CrossRefGoogle Scholar
Beebe, R. F., Ingersoll, A. P., Hunt, G. E., Mitchell, J. L. & Müller, J. P. 1980 Measurements of wind vectors, eddy momentum transports, and energy conversions in Jupiter’s atmosphere from Voyager 1 images. Geophys. Res. Lett. 7 (1), 14.Google Scholar
Berloff, P. 2005a On dynamically consistent eddy fluxes. Dyn. Atmos. Oceans 38 (3), 123146.CrossRefGoogle Scholar
Berloff, P. 2005b On rectification of randomly forced flows. J. Mar. Res. 63 (3), 497527.Google Scholar
Berloff, P. & Kamenkovich, I. 2013a On spectral analysis of mesoscale eddies. Part I: linear analysis. J. Phys. Oceanogr. 43 (12), 25052527.CrossRefGoogle Scholar
Berloff, P. & Kamenkovich, I. 2013b On spectral analysis of mesoscale eddies. Part II: nonlinear analysis. J. Phys. Oceanogr. 43 (12), 25282544.CrossRefGoogle Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009a A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.CrossRefGoogle Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009b A model of multiple zonal jets in the oceans: dynamical and kinematical analysis. J. Phys. Oceanogr. 39 (11), 27112734.CrossRefGoogle Scholar
Berloff, P., Karabasov, S., Farrar, J. T. & Kamenkovich, I. 2011 On latency of multiple zonal jets in the oceans. J. Fluid Mech. 686, 534567.Google Scholar
Boland, E., Thompson, A. F., Shuckburgh, E. & Haynes, P. 2012 The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr. 42 (10), 16351651.Google Scholar
Buckingham, C. E. & Cornillon, P. C. 2013 The contribution of eddies to striations in absolute dynamic topography. J. Geophys. Res. Oceans 118 (1), 448461.Google Scholar
Chan, C. J., Plumb, R. A. & Cerovecki, I. 2007 Annular modes in a multiple migrating zonal jet regime. J. Atmos. Sci. 64 (11), 40534068.Google Scholar
Charney, J. C. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871095.Google Scholar
Chelton, D. B., Deszoeke, R. A., Schlax, M. G., El Naggar, K. & Siwertz, N. 1998 Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 28 (3), 433460.Google Scholar
Chemke, R. & Kaspi, Y. 2015a The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades. J. Atmos. Sci. 72 (10), 38913907.Google Scholar
Chemke, R. & Kaspi, Y. 2015b Poleward migration of eddy-driven jets. J Adv. Model. Earth Syst. 7 (3), 14571471.Google Scholar
Chen, C. & Kamenkovich, I. 2013 Effects of topography on baroclinic instability. J. Phys. Oceanogr. 43 (4), 790804.Google Scholar
Chen, C., Kamenkovich, I. & Berloff, P. 2015 On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr. 45 (3), 927940.CrossRefGoogle Scholar
Chen, C., Kamenkovich, I. & Berloff, P. 2016 Eddy trains and striations in quasigeostrophic simulations and the ocean. J. Phys. Oceanogr. 46 (9), 28072825.Google Scholar
Cho, J. Y. K. & Polvani, L. M. 1996 The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids 8 (6), 15311552.Google Scholar
Connaughton, C. P., Nadiga, B. T., Nazarenko, S. V. & Quinn, B. E. 2010 Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech. 654, 207231.Google Scholar
Constantinou, N. C., Farrell, B. F. & Ioannou, P. J. 2014 Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71 (5), 18181842.Google Scholar
Cravatte, S., Kessler, W. S. & Marin, F. 2012 Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats. J. Phys. Oceanogr. 42 (9), 14751485.Google Scholar
Cravatte, S., Kestenare, E., Marin, F., Dutrieux, P. & Firing, E. 2017 Subthermocline and intermediate zonal currents in the tropical Pacific Ocean: paths and vertical structure. J. Phys. Oceanogr. 47 (9), 23052324.Google Scholar
Dritschel, D. G. & McIntyre, M. E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65 (3), 855874.Google Scholar
Dunkerton, T. J. & Scott, R. K. 2008 A barotropic model of the angular momentum-conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci. 65 (4), 11051136.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64 (10), 36523665.Google Scholar
Gierasch, P. J., Conrath, B. J. & Magalha, J. A. 1986 Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus 67 (3), 456483.Google Scholar
Hannachi, A., Jolliffe, I. T. & Stephenson, D. B. 2007 Empirical orthogonal functions and related techniques in atmospheric science: a review. Intl J. Climatol. 27 (9), 11191152.Google Scholar
Hart, J. E. 1975 Baroclinic instability over a slope. Part I: linear theory. J. Phys. Oceanogr. 5 (4), 625633.Google Scholar
Hristova, H. G., Pedlosky, J. & Spall, M. A. 2008 Radiating instability of a meridional boundary current. J. Phys. Oceanogr. 38 (10), 22942307.Google Scholar
Huang, H. P. & Robinson, W. A. 1998 Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci. 55 (4), 611632.Google Scholar
Ingersoll, A. P., Beebe, R. F., Mitchell, J. L., Garneau, G. W., Yagi, G. M. & Müller, J. P. 1981 Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res. Space Phys. 86 (A10), 87338743.Google Scholar
Ingersoll, A. P., Gierasch, P. J., Banfield, D., Vasavada, A. R. & Team, G. I. 2000 Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere. Nature 403 (6770), 630632.Google Scholar
Kamenkovich, I., Berloff, P. & Pedlosky, J. 2009 Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr. 39 (6), 13611379.Google Scholar
Karabasov, S. A., Berloff, P. & Goloviznin, V. M. 2009 Cabaret in the ocean gyres. Ocean Model. 30 (2), 155168.Google Scholar
Kramer, W., van Buren, M. G., Clercx, H. J. H. & van Heijst, G. J. F. 2006 𝛽-plane turbulence in a basin with no-slip boundaries. Phys. Fluids 18 (2), 026603.Google Scholar
Lu, J. & Speer, K. 2010 Topography, jets, and eddy mixing in the Southern Ocean. J. Mar. Res. 68 (3–1), 479502.Google Scholar
Maltrud, M. E. & Vallis, G. K. 1991 Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech. 228, 321342.Google Scholar
Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65 (6), 19551966.Google Scholar
Maximenko, N. A., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32, L12607.Google Scholar
McIntyre, M. E. 1982 How well do we understand the dynamics of stratospheric warmings? J. Meteorol. Soc. Japan II 60 (1), 3765.Google Scholar
Melnichenko, O. V., Maximenko, N. A., Schneider, N. & Sasaki, H. 2010 Quasi-stationary striations in basin-scale oceanic circulation: vorticity balance from observations and eddy-resolving model. Ocean Dyn. 60 (3), 653666.Google Scholar
Nadiga, B. T. 2006 On zonal jets in oceans. Geophys. Res. Lett. 33, L12607.Google Scholar
Nakano, H. & Hasumi, H. 2005 A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr. 35 (4), 474488.Google Scholar
Panetta, R. L. 1993 Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 50 (14), 20732106.2.0.CO;2>CrossRefGoogle Scholar
Qiu, B., Chen, S. & Sasaki, H. 2013 Generation of the North Equatorial Undercurrent jets by triad baroclinic Rossby wave interactions. J. Phys. Oceanogr. 43 (12), 26822698.Google Scholar
Read, P. L., Conrath, B. J., Fletcher, L. N., Gierasch, P. J., Simon-Miller, A. A. & Zuchowski, L. C. 2009 Mapping potential vorticity dynamics on Saturn: zonal mean circulation from Cassini and Voyager data. Planet. Space Sci. 57 (14), 16821698.Google Scholar
Rhines, P. B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (03), 417443.Google Scholar
Richards, K. J., Maximenko, N. A., Bryan, F. O. & Sasaki, H. 2006 Zonal jets in the Pacific Ocean. Geophys. Res. Lett. 33, L03605.Google Scholar
Scott, R. K. & Polvani, L. M. 2007 Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64 (9), 31583176.Google Scholar
Sinha, B. & Richards, K. J. 1999 Jet structure and scaling in Southern Ocean models. J. Phys. Oceanogr. 29 (6), 11431155.Google Scholar
Smith, S. 2007 Eddy amplitudes in baroclinic turbulence driven by nonzonal mean flow: shear dispersion of potential vorticity. J. Phys. Oceanogr. 37 (4), 10371050.Google Scholar
Sokolov, S. & Rintoul, S. R. 2007 Multiple jets of the Antarctic circumpolar current south of Australia. J. Phys. Oceanogr. 37 (5), 13941412.Google Scholar
Srinivasan, K. 2013 Stochastically Forced Zonal Flows. University of California.Google Scholar
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69 (5), 16331656.CrossRefGoogle Scholar
Stern, A., Nadeau, L. P. & Holland, D. 2015 Instability and mixing of zonal jets along an idealized continental shelf break. J. Phys. Oceanogr. 45 (9), 23152338.CrossRefGoogle Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2007 On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64 (9), 33123327.Google Scholar
Thompson, A. F. 2010 Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr. 40 (2), 257278.Google Scholar
Thompson, A. F. & Naveira Garabato, A. C. 2014 Equilibration of the Antarctic circumpolar current by standing meanders. J. Phys. Oceanogr. 44 (7), 18111828.Google Scholar
Thompson, A. F. & Richards, K. J. 2011 Low frequency variability of Southern Ocean jets. J. Geophys. Res. Oceans 116, C09022.Google Scholar
Thompson, A. F. & Young, W. R. 2007 Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance. J. Atmos. Sci. 64 (9), 32143231.Google Scholar
Tréguier, A. M. & Panetta, R. L. 1994 Multiple zonal jets in a quasigeostrophic model of the Antarctic circumpolar current. J. Phys. Oceanogr. 24 (11), 22632277.Google Scholar
Vallis, G. K. 2017 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.Google Scholar
Vallis, G. K. & Maltrud, M. E. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23 (7), 13461362.Google Scholar
Van Sebille, E., Kamenkovich, I. & Willis, J. K. 2011 Quasi-zonal jets in 3-D Argo data of the Northeast Atlantic. Geophys. Res. Lett. 38, L02606.Google Scholar
Wang, J., Spall, M. A., Flierl, G. R. & Malanotte-Rizzoli, P. 2012 A new mechanism for the generation of quasi-zonal jets in the ocean. Geophys. Res. Lett. 39, L10601.Google Scholar
Williams, G. P. 1979 Planetary circulations: 2. The Jovian quasi-geostrophic regime. J. Atmos. Sci. 36 (5), 932969.Google Scholar
Williams, G. P. 2003 Jovian dynamics. Part III: multiple, migrating, and equatorial jets. J. Atmos. Sci. 60 (10), 12701296.Google Scholar
Young, R. M. B. & Read, P. L. 2017 Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nat. Phys. 13 (11), 1135.Google Scholar
Youngs, M. K., Thompson, A. F., Lazar, A. & Richards, K. 2017 ACC meanders, energy transfer, and mixed barotropic–baroclinic instability. J. Phys. Oceanogr. 47 (6), 12911305.Google Scholar